Constraint Database Models Characterizing Timed Bisimilarity

  • Supratik Mukhopadhyay
  • Andreas Podelski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1990)

Abstract

The problem of deciding timed bisimilarity has received increasing attention; it is important for verification of timed systems. Using a characterization of timed bisimilarity in terms of models of constraint databases, we present to our knowledge, the first local, symbolic algorithm for deciding timed bisimilarity; previous algorithms were based on a finite, but prohibitively large, abstraction (the region graph or the full backward stable graph). Our algorithm uses XSB-style tabling with constraints. Our methodology is more general than those followed in the previous approaches in the sense that our algorithm can be used to decide whether two timed systems are alternating timed bisimilar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACH94]
    R. Alur, C. Courcoubetis, and T. A. Henzinger. The observational power of clocks. In B. Jonsson and J. Parrow, editors, CONCUR: fifth Internationsl Conference on Concurrency Theory, volume 836 of LNCS, pages 162–177, 1994.Google Scholar
  2. [AD94]
    R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–236, 1994.MATHCrossRefMathSciNetGoogle Scholar
  3. [AHKV98]
    R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement relations. In D. Sangiorgi and R. de Simone, editors, CONCUR: International Conference on Concurrency Theory, LNCS, pages 163–178. Springer, 1998.Google Scholar
  4. [BLL+96]
    Johan Bengtsson, Kim. G. Larsen, Fredrik Larsson, Paul Petersson, and Wang Yi. Uppaal in 1995. In T. Margaria and B. Steffen, editors, TACAS, LNCS 1055, pages 431–434. Springer-Verlag, 1996.Google Scholar
  5. [BS91]
    A. Brodsky and Y. Sagiv. Inference of inequality constraints in logic programs. In PODS: Principles of Database Systems, pages 227–240. ACM Press, 1991.Google Scholar
  6. [CDD+98]
    B. Cui, Y. Dong, X. Du, K. N. Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan, A. Roychoudhury, S. A. Smolka, and D. S. Warren. Logic programming and model checking. In PLAP/ALP98, volume 1490of LNCS, pages 1–20. Springer-Verlag, 1998.Google Scholar
  7. [Cer92]
    K. Cerāns. Decidability of bisimulation equivalence for parallel timer processes. In G. von Bochmann and D.K. Probst, editors, CAV 92: Computeraided Verification, Lecture Notes in Computer Science 663, pages 302–315. Springer-Verlag, 1992.Google Scholar
  8. [CW96]
    W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs. JACM, 43(1):20–74, 1996.MATHCrossRefMathSciNetGoogle Scholar
  9. [DW99]
    M. Dickhöfer and T. Wilke. Timed alternating tree automata: The automata-theoretic solution to the tctl model checking problem. In J. Widermann, P. van Emde Boas, and M. Nielsen, editors, ICALP: Automata, Languages and Programming, volume 1644 of LNCS, pages 281–290. Springer-Verlag, 1999.CrossRefGoogle Scholar
  10. [FP93]
    Laurent Fribourg and Marcos Veloso Peixoto. Concurrent constraint automata. Technical Report LIENS 93-10, ENS Paris, 1993.Google Scholar
  11. [GP97]
    G. Gupta and E. Pontelli. A constraint-based approach for the specification and verification of real-time systems. In Kwei-Jay Lin, editor, IEEE Real-Time Systems Symposium, pages 230–239. IEEE Press, 1997.Google Scholar
  12. [Gup99]
    Gopal Gupta. Horn logic denotations and their applications. In The Logic Programming Paradigm: A 25 year perspective. Springer-Verlag, 1999.Google Scholar
  13. [HNSY94]
    T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems. Information and Computation, 111(2):193–244, 1994. Special issue for LICS 92.MATHCrossRefMathSciNetGoogle Scholar
  14. [JM94]
    J. Jaffar and M. J. Maher. Constraint logic programming: A survey. The Journal of Logic Programming, 19/20:503–582, May-July 1994.Google Scholar
  15. [KKR95]
    P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. Journal of Computer and System Sciences, 51:26–52, 1995. (Preliminary version in Proc. 9th ACM PODS, 299–313, 1990.).CrossRefMathSciNetGoogle Scholar
  16. [LLW95]
    F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic-and back. Technical Report RS-95-2, BRICS, 1995.Google Scholar
  17. [McM93]
    Kenneth. L. McMillan. Symbolic Model Checking. Kluwer, 1993.Google Scholar
  18. [Mil89]
    R. Milner. Communication and Concurrency. Prentice-Hall, 1989.Google Scholar
  19. [MP99]
    Supratik Mukhopadhyay and Andreas Podelski. Model checking for timed logic processes, 1999. Available at http://www.mpi-sb.mpg.de/~supratik/.
  20. [Rev90]
    Peter Revesz. A closed form for datalog queries with integer order. In S. Abiteboul and P. C’. Kanellakis, editors, ICDT: the International Conference on Database Theory, volume 470of LNCS, pages 187–201. Springer-Verlag, 1990.Google Scholar
  21. [RRR+97]
    Y. S. Ramakrishna, C. R. Ramakrishnan, I. V Ramakrishnan, S. A. Smolka, T. W. Swift, and D. S. Warren. Efficient model checking using tabled resolution. In O. Grumberg, editor, the 9th International Conference on Computer-Aided-Verification, pages 143–154. Springer-Verlag, July 1997.Google Scholar
  22. [SS95]
    Oleg Sokolsky and Scott. A. Smolka. Local model checking for real-time systems. In Pierre Wolper, editor, 7th International Conference on Computer-Aided Verification, volume 939 of LNCS, pages 211–224. Springer-Verlag, July 1995.Google Scholar
  23. [TS86]
    H. Tamaki and T. Sato. Old resolution with tabulation. In International Conference on Logic Programming, LNCS, pages 84–98. Springer-Verlag, 1986.Google Scholar
  24. [Vie87]
    L. Vielle. A database-complete proof procedure based on sld-resolution. In Fourth International Conference on Logic Programming. MITPress, 1987.Google Scholar
  25. [WL97]
    C. Weise and D. Lenzes. Efficient scaling-invariant checking of timed bisimulation. In R. Reischuk and M. Morvan, editors, STACS: Annual Symposium on Theoretical Aspects of Computer Science, volume 1200of LNCS, pages 177–188, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Supratik Mukhopadhyay
    • 1
  • Andreas Podelski
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations