A Formal Framework for Synthesis and Verification of Logic Programs

  • Alessandro Avellone
  • Mauro Ferrari
  • Camillo Fiorentini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2042)

Abstract

In this paper we present a formal framework, based on the notion of extraction calculus, which has been applied to define procedures for extracting information from constructive proofs. Here we apply such a mechanism to give a proof-theoretic account of SLD-derivations. We show how proofs of suitable constructive systems can be used in the context of deductive synthesis of logic programs, and we state a link between constructive and deductive program synthesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Benini. Verification and Analysis of Programs in a Constructive Environment. PhD thesis, Dipartimento di Scienze dell’Informazione, Università di Milano, 1999.Google Scholar
  2. 2.
    S. Buss and G. Mints. The complexity of the disjunction and existential properties in intuitionistic logic. Annals of Pure and Applied Logic, 99(3):93–104, 1999.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Y. Deville and K. Lau. Logic program synthesis. Journal of Logic Programming, 19(20):321–350, 1994.CrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Ferrari. Strongly Constructive Formal Systems. PhD thesis, Dipartimento di Scienze dell’Informazione, Universitá degli Studi di Milano, Italy, 1997. Available at http://homes.dsi.unimi.it/~ferram.
  5. 5.
    M. Ferrari, C. Fiorentini, and P. Miglioli. Goal oriented information extraction in uniformly constructive calculi. In Proceedings of WAIT’99: Workshop Argentino de Informática Teórica, pages 51–63. Sociedad Argentina de Informática e Investigaci ón Operativa, 1999.Google Scholar
  6. 6.
    M. Ferrari, C. Fiorentini, and P. Miglioli. Extracting information from intermediate T-systems. Technical Report 252-00, Dipartimento di Scienze dell’Informazione, Universitá degli Studi di Milano, Italy, 2000. Available at http://homes.dsi.unimi.it/~ferram.
  7. 7.
    M. Ferrari, C. Fiorentini, and P. Miglioli. Extracting information from intermediate semiconstructive HA-systems (extended abstract). Mathematical Structures in Computer Science, 11, 2001.Google Scholar
  8. 8.
    M. Ferrari, P. Miglioli, and M. Ornaghi. On uniformly constructive and semiconstructive formal systems. Submitted to Annals of Pure and Applied Logic, 1999.Google Scholar
  9. 9.
    K.-K. Lau and M. Ornaghi. On specification frameworks and deductive synthesis of logic programs. In Logic Program Synthesis and Transformation. Proceedings of LOPSTR’94. Springer-Verlag, 1994.Google Scholar
  10. 10.
    Kung-Kiu Lau, Mario Ornaghi, and Sten-Åke Tärnlund. The halting problem for deductive synthesis of logic programs. In P. Van Hentenryck, editor, Logic Programming-Proceedings of the Eleventh International Conference on Logic Programming, pages 665–683. The MIT Press, 1994.Google Scholar
  11. 11.
    J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 2nd edition, 1987.MATHGoogle Scholar
  12. 12.
    P. Miglioli, U. Moscato, and M. Ornaghi. Abstract parametric classes and abstract data types defined by classical and constructive logical methods. Journal of Symbolic Computation, 18:41–81, 1994.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    A. Momigliano and M. Ornaghi. Regular search spaces as a foundation of logic programming. In R. Dyckhoff, editor, Proceedings of the 4th International Workshop on Extensions of Logic Programming, volume 798 of LNAI, pages 222–254, Berlin, 1994. Springer.Google Scholar
  15. 15.
    D. Prawitz. Natural Deduction. Almquist and Winksell, 1965.Google Scholar
  16. 16.
    J. C. Shepherdson. Negation in logic progamming. In J. Minker, editor, Found. of Deductive Databases and Logic Programming, page 19. Morgan Kaufmann, San Mateo, CA, 1988.Google Scholar
  17. 17.
    A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alessandro Avellone
    • 1
  • Mauro Ferrari
    • 1
  • Camillo Fiorentini
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations