Advertisement

Speeding-Up Cellular Automata by Alternations

  • Chuzo Iwamoto
  • Katsuyuki Tateishi
  • Kenichi Morita
  • Katsunobu Imai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2055)

Abstract

There are two simple models of cellular automata: a semiinfinite array (with left boundary) of cells with sequential input mode, called an iterative array (IA), and a finite array (delimited at both ends) of n cells with parallel input mode, called a bounded cellular array (BCA). This paper presents a quadratic speedup theorem for IAs and an exponential speedup theorem for BCAs by using alternations. It is shown that for any computable functions s(n), t(n) ≥ n, every s(n)t(n)- time deterministic IA can be simulated by an O(s(n))-space O(t(n))- time alternating IA. Since any t(n)-time IA is t(n)-space bounded, every (t(n)) 2-time deterministic IA can be simulated by an O(t(n))-time alternating IA. This leads to a separation result: There is a language which can be accepted by an alternating IA in O(t(n)) time but not by any deterministic IA in O(t(n)) time. It is also shown that every t(n)- time nondeterministic BCA can be simulated by a linear-time alternating BCA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Buchholz, A. Klein, and M. Kutrib, One guess one-way cellular array, in: Proc. MFCS (LNCS1450), 1998, 807–815.Google Scholar
  2. 2.
    J.H. Chang, O.H. Ibarra, and A. Vergis, On the power of one-way communication, J. ACM, 35 3 (1988) 697–726.CrossRefMathSciNetGoogle Scholar
  3. 3.
    C. Choffrut and K. Culik II, On real-time cellular automata and trellis automata, Acta Informatica, 21 (1984) 393–407.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    S.N. Cole, Real-time computation by n dimensional iterative arrays of finite-state machines, IEEE Trans. on Computers, C-18 4 (1969) 349–365.CrossRefMathSciNetGoogle Scholar
  5. 5.
    C.R. Dyer, One-way bounded cellular automata, Inform. and Control, 44 (1980) 261–281.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Gupta, Alternating time versus deterministic time: a separation, in: Proc. Structure in Complexity, 1993, 266–277.Google Scholar
  7. 7.
    O. Heen, Linear speed-up for cellular automata synchronizers and applications, Theoret. Comput. Sci., 188 (1997) 45–57.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    O.H. Ibarra and T. Jiang, On one-way cellular arrays, SIAM J. Comput., 16 6 (1987) 1135–1154.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    O.H. Ibarra and T. Jiang, Relating the power of cellular arrays to their closure properties, Theoret. Comput. Sci., 57 (1988) 225–235.CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    O.H. Ibarra and M.A. Palis, Two-dimensional iterative arrays: characterizations and applications, Theoret. Comput. Sci., 57 (1988) 47–86.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    C. Iwamoto, T. Hatsuyama, K. Morita, and K. Imai, On time-constructible functions in one-dimensional cellular automata, in: Proc. Int’l Symp. on Fundamentals of Computation Theory (LNCS1684), 1999, 316–326.Google Scholar
  12. 12.
    K. Krithivasan and M. Mahajan, Nondeterministic, probabilistic and alternating computations on cellular array models, Theoret. Comput. Sci., 143 (1995) 23–49.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    M. Matamala, Alternation on cellular automata, Theoret. Comput. Sci., 180 (1997) 229–241.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    J. Mazoyer, A 6-state minimal time solution to the firing squad synchronization problem, Theoret. Comput. Sci., 50 (1987) 183–238.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Y. Ozhigov, Computations on nondeterministic cellular automata, Inform. and Computation, 148 (1999) 181–201.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    W.J. Paul, E.J. Prauβ, and R. Reischuk, On alternation, Acta Informatica 14 (1980) 243–255.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A.R. Smith III, Real-time recognition by one-dimensional cellular automata, J. of Comput. and System Sci., 6 (1972) 233–253.zbMATHGoogle Scholar
  18. 18.
    V. Terrier, On real time one-way cellular array, Theoret. Comput. Sci., 141 (1995) 331–335.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Umeo, K. Morita, and K. Sugata, Deterministic one-way simulation of two-way real-time cellular automata and its related problems, Inform. Process. Lett., 14 4 (1982) 158–161.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    J. Wiedermann, Speeding-up single-tape nondeterministic computations by single alternation, with separation results, in: Proc. MFCS (LNCS1099), 1996, 381–392.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Chuzo Iwamoto
    • 1
  • Katsuyuki Tateishi
    • 1
  • Kenichi Morita
    • 1
  • Katsunobu Imai
    • 1
  1. 1.Hiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations