Advertisement

From Higher-Order to First-Order Rewriting

(Extended Abstract)
  • Eduardo Bonelli
  • Delia Kesner
  • Alejandro Ríos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2051)

Abstract

We show how higher-order rewriting may be encoded into first-order rewriting modulo an equational theory ε. We obtain a characterization of the class of higher-order rewriting systems which can be encoded by first-order rewriting modulo an empty theory (that is, ε = 0). This class includes of course the λ-calculus. Our technique does not rely on a particular substitution calculus but on a set of abstract properties to be verified by the substitution calculus used in the translation.

Keywords

Function Symbol Equational Theory Ground Term Substitution Symbol Dependency Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Functional Programming, 4(1):375–416, 1991.Google Scholar
  2. 2.
    T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer Science, 236:133–178, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    L. Bachmair and N. Dershowitz. Critical pair criteria for completion. Journal of Symbolic Computation, 6(1):1–18, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λv, a calculus of explicit substitutions which preserves strong normalisation. Journal of Functional Programming, 6(5):699–722, 1996.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Bonelli, D. Kesner, and A. Ríos. A de Bruijn notation for higher-order rewriting. In Proc. of the Eleventh Int. Conference on Rewriting Techniques and Applications, Norwich, UK, July 2000.Google Scholar
  6. 6.
    R. David and B. Guillaume. A λ-calculus with explicit weakening and explicit substitutions. Journal of Mathematical Structures in Computer Science, 2000. To appear.Google Scholar
  7. 7.
    N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science, 17(3):279–301, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    N. Dershowitz and J-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages 243–309. North-Holland, 1990.Google Scholar
  9. 9.
    G. Dowek, T. Hardin and C. Kirchner. Theorem proving modulo. Technical Report RR 3400, INRIA, 1998.Google Scholar
  10. 10.
    G. Dowek, T. Hardin, C. Kirchner and F. Pfenning. Unification via Explicit Substitutions: The Case of Higher-Order Patterns. Technical Report RR3591. INRIA. 1998.Google Scholar
  11. 11.
    G. Dowek, T. Hardin and C. Kirchner. Higher-order unification via explicit substitutions. Information and Computation, 157:183–235, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    G. Dowek, T. Hardin and C. Kirchner. Hol-lambda-sigma: an intentional first-order expression of higher-order logic. Mathematical Structures in Computer Science, 11:1–25, 2001.CrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Hardin and J-J. Lévy. A confluent calculus of substitutions. In France-Japan Artificial Intelligence and Computer Science Symposium, 1989.Google Scholar
  14. 14.
    J-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Fourteenth Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, 1999.Google Scholar
  15. 15.
    F. Kamareddine and A. Ríos. A λ-calculus à la de Bruijn with explicit substitutions. In Proc. of the Int. Symposium on Programming Language Implementation and Logic Programming (PLILP), LNCS 982. 1995.CrossRefGoogle Scholar
  16. 16.
    S. Kamin and J. J. Lévy. Attempts for generalizing the recursive path orderings. University of Illinois, 1980.Google Scholar
  17. 17.
    D. Kesner. Confluence of extensional and non-extensional lambda-calculi with explicit substitutions. Theoretical Computer Science, 238(1-2):183–220, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Z. Khasidashvili. Expression Reduction Systems. In Proc. of I. Vekua Institute of Applied Mathematics, volume 36, Tbilisi, 1990.Google Scholar
  19. 19.
    Z. Khasidashvili and M. Ogawa and V. van Oostrom. Uniform Normalization beyond Orthogonality. Submitted for publication, 2000.Google Scholar
  20. 20.
    P. Lescanne and J. Rouyer-Degli. Explicit substitutions with de Bruijn levels. In Proc. of the Sixth Int. Conference on Rewriting Techniques and Applications, LNCS 914, 1995.Google Scholar
  21. 21.
    P-A. Melliès. Description Abstraite des Systèmes de Réécriture. Thèse de l’Université Paris VII, December 1996.Google Scholar
  22. 22.
    C. Muñoz. A left-linear variant of λσ. In Michael Hanus, J. Heering, and K. (Karl) Meinke, editors, Proc. of the 6th Int. Conference on Algebraic and Logic Programming (ALP’97), LNCS 1298. 1997.Google Scholar
  23. 23.
    T. Nipkow. Higher-order critical pairs. in Proc. of the Sixth Annual IEEE Symposium on Logic in Computer Science, 1991.Google Scholar
  24. 24.
    B. Pagano. Des Calculs de Susbtitution Explicite et leur application à la compilation des langages fonctionnels. PhD thesis, Université Paris VI, 1998.Google Scholar
  25. 25.
    R. Pollack. Closure under alpha-conversion. In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs and Programs (TYPES), LNCS 806. 1993.Google Scholar
  26. 26.
    H. Zantema. Termination of Term Rewriting by Semantic Labelling. Fundamenta Informaticae, volume 24, pages 89–105, 1995.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Eduardo Bonelli
    • 1
    • 2
  • Delia Kesner
    • 2
  • Alejandro Ríos
    • 1
  1. 1.Departamento de Computación – Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresArgentina
  2. 2.LRI (CNRS URA 410) – Bêt 490Université de Paris-SudOrsay CedexFrance

Personalised recommendations