On Termination of Higher-Order Rewriting

  • Femke van Raamsdonk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2051)

Abstract

We discuss the termination methods using the higher-order recursive path ordering and the general scheme for higher-order rewriting systems and combinatory reduction systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization in the algebraic lambda-cube. Jounal of Functional Programming, 7(6):613–660, 1997. An earlier version appears in the Proceedings of LICS’ 94.MATHCrossRefGoogle Scholar
  2. 2.
    F. Blanqui. Termination and con uence of higher-order rewrite systems. In L. Bachmair, editor, Proceedings of the 10th International Conference on Rewriting Techniques and Applications (RTA’ 99), number 1833 in LNCS, pages 47–62, Norwich, UK, July 2000. Springer Verlag.CrossRefGoogle Scholar
  3. 3.
    N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science, 17(3):279–301, 1982.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J.-P. Jouannaud and M. Okada. A computation model for executable higher-order algebraic specification languages. In Proceedings of the 6th annual IEEE Symposium on Logic in Computer Science (LICS’ 91), pages 350–361, Amsterdam, The Netherlands, July 1991.Google Scholar
  5. 5.
    J.-P. Jouannaud and A. Rubio. A recursive path ordering for higher-order terms in η-long β-normal form. In H. Gantzinger, editor, Proceedings of the 7th International Conference on Rewriting Techniques and Applications (RTA’ 96), number 1103 in LNCS, pages 108–122, New Brunswick, USA, July 1996. Springer Verlag.Google Scholar
  6. 6.
    J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proceedings of the 14th annual IEEE Symposium on Logic in Computer Science (LICS’ 99), pages 402–411, Trento, Italy, July 1999.Google Scholar
  7. 7.
    J.-P. Jouannaud and A. Rubio. Higher-order recursive path orderings à la carte. http://www.lri.fr/~jouannau/biblio.html, 2000.
  8. 8.
    J.W. Klop. Combinatory Reduction Systems. Number 127 in Mathematical Centre Tracts. CWI, Amsterdam, The Netherlands, 1980. PhD Thesis.MATHGoogle Scholar
  9. 9.
    J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory Reduction Systems: introduction and survey. Theoretical Computer Science, 121:279–308, 1993. Special issue in honour of Corrado Böhm.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    C. Loria-Saenz and J. Steinbach. Termination of combined (rewrite and lambda-calculus) systems. In M. Rusinowitch and J.-L. Rémy, editors, Proceedings of the 3rd International Workshop on Conditional Term Rewriting Systems (CTRS’92), number 656 in LNCS, pages 143–147, Pont-à-Mousson, France, April 1993. Springer Verlag.Google Scholar
  11. 11.
    O. Lysne and J. Piris. A termination ordering for higher order rewrite systems. In J. Hsiang, editor, Proceedings of the 6th International Conference on Rewriting Techniques and Applications (RTA’ 95), number 914 in LNCS, pages 26–40, Kaiserslautern, Germany, April 1995. Springer Verlag.Google Scholar
  12. 12.
    R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical Computer Science, 192:3–29, 1998.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    D. Miller. A logic programming language with lambda-abstraction, function variables, and simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    T. Nipkow. Higher-order critical pairs. In Proceedings of the 6th annual IEEE Symposium on Logic in Computer Science (LICS’ 91), pages 342–349, Amsterdam, The Netherlands, July 1991.Google Scholar
  15. 15.
    V. van Oostrom. Higher-order families. In H. Gantzinger, editor, Proceedings of the 7th International Conference on Rewriting Techniques and Applications (RTA’ 96), number 1103 in LNCS, pages 392–407, New Brunswick, USA, July 1996. Springer Verlag.Google Scholar
  16. 16.
    J.C. van de Pol. Termination of higher-order rewrite systems. PhD thesis, Utrecht University, Utrecht, The Netherlands, December 1996.MATHGoogle Scholar
  17. 17.
    F. van Raamsdonk. Higher-order rewriting. In P. Narendran and M. Rusinowitch, editors, Proceedings of the 9th International Conference on Rewriting Techniques and Applications (RTA’ 99), number 1631 in LNCS, pages 220–239, Trento, Italy, July 1999. Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Femke van Raamsdonk
    • 1
    • 2
  1. 1.Division of Mathematics and Computer Science Faculty of SciencesVrije UniversiteitAmsterdamThe Netherlands
  2. 2.CWIAmsterdamThe Netherlands

Personalised recommendations