On the Parallel Complexity of Tree Automata

  • Markus Lohrey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2051)


We determine the parallel complexity of several (uniform) membership problems for recognizable tree languages. Furthermore we show that the word problem for a fixed finitely presented algebra is in DLOGTIME-uniform NC1.


Word Problem Function Symbol Ground Term Tree Automaton Parallel Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. M. Barrington and J. Corbet. On the relative complexity of some languages in NC1. Information Processing Letters, 32:251–256, 1989.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of Computer and System Sciences, 41:274–306, 1990.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Beaudry and P. McKenzie. Circuits, matrices, and nonassociative computation. Journal of Computer and System Sciences, 50(3):441–455, 1995.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Berman, A. Drisko, F. Lemieux, C. Moore, and D. Thérien. Circuits and expressions with non-associative gates. In Proceedings of the 12th Annual IEEE Conference on Computational Complexity, Ulm (Germany), pages 193–203. IEEE Computer Society Press, 1997.Google Scholar
  5. 5.
    S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the 19th Annual Symposium on Theory of Computing (STOC 87), pages 123–131. ACM Press, 1987.Google Scholar
  6. 6.
    S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canonization. In Kurt Gödel Colloquium 97, pages 18–33, 1997.Google Scholar
  7. 7.
    H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata, 1997.
  8. 8.
    S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space. Journal of Algorithms, 8:385–394, 1987.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science (LICS’ 90), pages 242–256. IEEE Computer Society Press, 1990.Google Scholar
  10. 10.
    N. Dershowitz and J.-P. Jouannaud. Rewriting systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 243–320. Elsevier Publishers, Amsterdam, 1990.Google Scholar
  11. 11.
    J. E. Doner. Decidability of the weak second-order theory of two successors. Notices Amer. Math. Soc., 12:365–468, 1965.Google Scholar
  12. 12.
    J. E. Doner. Tree acceptors and some of their applications. Journal of Computer and System Sciences, 4:406–451, 1970.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In J. Karhumäki, H. Maurer, G. Paun, and G. Rozenberg, editors, Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pages 72–83. Springer, 1999.Google Scholar
  14. 14.
    F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiadó, 1984.Google Scholar
  15. 15.
    G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS 98, Palo Alto, California, USA), pages 706–715. IEEE Computer Society Press, 1998.Google Scholar
  16. 16.
    S. Greibach. The hardest context-free language. SIAM Journal on Computing, 2(4):304–310, 1973.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.Google Scholar
  18. 18.
    M. Holzer and K.-J. Lange. On the complexities of linear LL(1) and LR(1) grammars. In Z. Ésik, editor, Proceedings of the 9th International Symposium on Fundamentals of Computation Theory (FCT’93, Szeged, Hungary), number 710 in Lecture Notes in Computer Science, pages 299–308. Springer, 1993.Google Scholar
  19. 19.
    B. Jenner, P. McKenzie, and J. Torán. A note on the hardness of tree isomorphism. In Proceedings of the 13th Annual IEEE Conference on Computational Complexity, pages 101–105. IEEE Computer Society Press, 1998.Google Scholar
  20. 20.
    N. D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Computer and System Sciences, 11(1):68–85, 1975.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    D. C. Kozen. Complexity of finitely presented algebras. In 9th Annual Symposium on Theory of Computing (STOC 77), pages 164–177. ACM Press, 1977.Google Scholar
  22. 22.
    R. McNaughton. Parenthesis grammars. Journal of the Association for Computing Machinery, 14(3):490–500, 1967.MATHMathSciNetGoogle Scholar
  23. 23.
    C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.Google Scholar
  24. 24.
    W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences, 21:218–235, 1980.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences, 22:365–383, 1981.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    I. H. Sudborough. On the tape complexity of deterministic context-free languages. Journal of the Association for Computing Machinery, 25(3):405–414, 1978.MATHMathSciNetGoogle Scholar
  27. 27.
    J. W. Thatcher and J. B. Wright. Generalized finite automata with an application to a decision problem of second order logic. Mathematical Systems Theory, 2:57–82, 1968.CrossRefMathSciNetGoogle Scholar
  28. 28.
    M. Veanes. On computational complexity of basic decision problems of finite tree automata. Technical Report 133, Uppsala Computing Science Department, 1997.Google Scholar
  29. 29.
    H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer and System Sciences, 43:380–404, 1991.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Markus Lohrey
    • 1
  1. 1.Institut für InformatikUniversität StuttgartStuttgartGermany

Personalised recommendations