Voronoi Diagrams Based Function Identification

  • Carlos Kavka
  • Marc Schoenauer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2723)


Evolutionary algorithms have been applied to function identification problems with great success. This paper presents an approach in which the individuals represent a partition of the input space in Voronoi regions together with a set of local functions associated to each one of these regions. In this way, the solution corresponds to a combination of local functions over a spatial structure topologically represented by a Voronoi diagram. Experiments show that the evolutionary algorithm can successfully evolve both the partition of the input space and the parameters of the local functions in simple problems.


Evolutionary Algorithm Local Function Input Space Voronoi Diagram Point Crossover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed, M. and De Jong, K.: Function Approximator Design using Genetic Algorithms. Proceedings of the 1997 IEEE Int. Conference on Evolutionary Computation, Indianapolis, IN, pp. 519–523 (1997)Google Scholar
  2. 2.
    Anton, F., Mioc D. and Gold C.: Line Voronoi Diagram based Interpolation and Application to Digital Terrain Modeling. Proceedings of the 13th Canadian Conference on Computational Geometry, University of Waterloo, (2001)Google Scholar
  3. 3.
    Back, T. Fogel, D. and Michalewicz, Z.(Eds.): Handbook of Evolutionary Computation. IOP Publishing Ltd and Oxford University Press. (1997)Google Scholar
  4. 4.
    Boissonnat, J. and Cazals, F.: Smooth Surface Reconstruction via Natural Neighbour Interpolation of Distance Functions. Rapport de recherche de l’INRIA — Sophia Antipolis (2000)Google Scholar
  5. 5.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, Algorithms and Applications. Second Edition. Springer-Verlag. (1998)Google Scholar
  6. 6.
    Fadda, A. and Schoenauer, M., Evolutionary Chromatographic Law Identification by Recurrent Neural Nets. In J. R. McDonnell and R. G. Reynolds and D. B. Fogel, Eds, Proc. 4th Annual Conference on Evolutionary Programming, pp 219–235. MIT Press, 1995.Google Scholar
  7. 7.
    Fiesler, E. and Beale R. (Eds.): Handbook of Neural Computation. Institute of Physics Publishing. (1997)Google Scholar
  8. 8.
    Koza, J.: Genetic Programming: On the Programming of Computers by means of Natural Evolution. MIT Press. (1992)Google Scholar
  9. 9.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Third, Revised and Extended Edition. Springer-Verlag Berlin Heidelberg. (1999)Google Scholar
  10. 10.
    Schoenauer, M., Jouve, F. and Kallel, L. Identification of Mechanical Inclusions. Dasgupta and Z. Michalewicz Ed. Identification of Mechanical Inclusions. Evolutionary Algorithms in Engineering Applications. (1997)Google Scholar
  11. 11.
    Wilson, S.: Classifiers that approximate functions. Natural Computing, 1(2–3), 211–234 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Zienkiewicz, O. C. and Taylor R. L.: Finite Element Method: Volume 1, The Basis. Fifth edition. Butterworth-Heinemann.(2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Carlos Kavka
    • 1
  • Marc Schoenauer
    • 2
  1. 1.LIDIC, Departamento de InformáticaUniversidad Nacional de San LuisSan LuisArgentina
  2. 2.Projet FractalesINRIA RocquencourtLe Chesnay CedexFrance

Personalised recommendations