Segmentation of Histopathological Section Using Snakes

  • Adam Karlsson
  • Kent Stråhlén
  • Anders Heyden
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)

Abstract

This paper presents a semi-automatic method for segmentation of digital images. The segmentation method is based on snakes and a novel implementation of the snake evolution algorithm is presented. Analytical expressions describing the snake evolution are derived using the Fourier transform. These expressions can be sampled and used in a fast algorithm for snake propagation. Experiments are carried out on images of histopathological tissue sections and the results are very promising. In particular the method is able to cope with overlapping nuclei.

References

  1. 1.
    Jarkrans, T.: Algorithms for cell images analysis in cytology and pathology. PhD thesis, Faculty of Science and Technology, Uppsala University (1996)Google Scholar
  2. 2.
    Malpica, N., Ortiz de Solórzano, C, Vaquero, J.J., Santos, A., Vallcorba, I., García-Sagredo, J.M., del Pozo, F.: Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28 (1997) 289–297CrossRefGoogle Scholar
  3. 3.
    Klemenčič, A., Kovačič, S., Pernuš, F.: Automated segmentation of muscle fiber images using active contour models. Cytometry 32 (1998) 317–326CrossRefGoogle Scholar
  4. 4.
    Ortiz de Solórzano, C, Malladi, R., Lelièvre, S.A., Lockett, S.J.: Segmentation of nuclei and cells using membrane related protein markers. Journal of Microscopy 201 (2001) 404–415CrossRefMathSciNetGoogle Scholar
  5. 5.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Computer Vision 1 (1987) 321–331CrossRefGoogle Scholar
  6. 6.
    Xu, C, Prince, J.L.: Gradient vector flow: A new external force for snakes. In: IEEE Proc. on Computer Vision and Pattern Recognition. (1997) 66–71Google Scholar
  7. 7.
    Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understanding 53 (1991) 211–218MATHCrossRefGoogle Scholar
  8. 8.
    Gunn, S.T., Nixon, M.S.: A robust snake implementation; a dual active contour. IEEE Trans. Pattern An. and Mach. Int. 19 (1997) 63–88CrossRefGoogle Scholar
  9. 9.
    Xu, C, Prince, J.L.: Snakes, shapes and gradient vector flow. IEEE Trans. on Image Processing 7 (1998) 359–369MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Xu, C.: Deformable models with applications to human cerebral cortex reconstruction from magnetic resonance images. PhD thesis, Johns Hopkins University (2000)Google Scholar
  11. 11.
    Xu, C., Prince, J.L.: Global optimality of gradient vector flow. In: Proc. Conference on Information Sciences and Systems. (2000)Google Scholar
  12. 12.
    Lobregt, S., Viergever, M.A.: A discrete dynamic contour model. IEEE Trans. on Medical Imaging 14 (1995) 12–24CrossRefGoogle Scholar
  13. 13.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Systems, Man snd Cybernetics 9 (1979) 62–66CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Adam Karlsson
    • 1
  • Kent Stråhlén
    • 2
  • Anders Heyden
    • 1
  1. 1.School of Technology and SocietyMalmö UniversitySweden
  2. 2.CellaVision ABLundSweden

Personalised recommendations