Reconstructing the Optical Thickness from Hoffman Modulation Contrast Images

  • Niels Holm Olsen
  • Jon Sporring
  • Mads Nielsen
  • Christina Hnida
  • Søren Ziebe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)

Abstract

Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Preza, E.B. van Munster, J.A. Aten, D.L. Snyder, and F.U. Rosenberger. Determination of direction-independent optical path-length distribution of cells using rotational-diversity transmitted-light differential interference contrast (dic) images. In C.J. Cogswell, J.A. Conchello, and T. Wilson, editors, Three-Dimensional Microscopy: Image Acquisition and Processing V, volume 3261 of Proceedings of SPIE, pages 60–70. SPIE, 1998.Google Scholar
  2. 2.
    D. Young, C.A. Glasbey, A.J. Gray, and N.J. Martin. Towards automatic cell identification in DIC microscopy. Journal of Microscopy, 192:186–193, 1998.CrossRefGoogle Scholar
  3. 3.
    A.N. Thikonov and V.Y. Arseninn. Solution of ill-posed problems. V.H. Winston & Sons, John Wiley, 1977.Google Scholar
  4. 4.
    M. Nielsen, L. Florack, and R. Deriche. Regularization, scale space, and edge detection filters. Journal on Mathematical Imaging and Vision, 7(4):291–307, 1997.CrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Hoffman and L. Gross. The modulation contrast microscope. Nature, 254:586–588, April 1975.CrossRefGoogle Scholar
  6. 6.
    R. Hoffman. The modulation contrast microscope: principles and performance. Journal of Microscopy, 110:205–222, August 1977.Google Scholar
  7. 7.
    R. Hoffman and L. Gross. Modulation contrast microscope. Applied Optics, 14(5):1169–1176, May 1975.CrossRefGoogle Scholar
  8. 8.
    S. Bradbury. An Introduction to the Optical Microscope, volume 01 of Royal Microscopical Society MICROSCOPY HANDBOOKS. BIOS Scientific Publishers Ltd, 9 Newtec Place, Magdalen Road, Oxford OX4 1RE, UK, revised edition, 1989.Google Scholar
  9. 9.
    W.T. Grandy Jr. Scattering of Waves from Large Spheres. Cambridge University Press, 2000.Google Scholar
  10. 10.
    M. Born and E. Wolf. Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, seventh (expanded) edition, 1999.Google Scholar
  11. 11.
    J. Weickert. Anisotropic diffusion in image processing. Teubner Verlag, Stuttgart, 1998.MATHGoogle Scholar
  12. 12.
    X. Zabulis, J. Sporring, and S.C. Orphanoudakis. Scale summarized and focused browsing of primitive visual content. In Proceedings of the Fourth International Conference on Visual Information Systems, volume 1929 of Lecture Notes in Computer Science, pages 269–278, Lyon, Prance, 2000. Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Niels Holm Olsen
    • 1
    • 2
    • 4
  • Jon Sporring
    • 1
  • Mads Nielsen
    • 2
  • Christina Hnida
    • 3
    • 4
  • Søren Ziebe
    • 3
  1. 1.3D-Lab, School of DentistryUniversity of CopenhagenCopenhagenDenmark
  2. 2.IT University of CopenhagenCopenhagenDenmark
  3. 3.Fertility ClinicUniversity HospitalCopenhagenDenmark
  4. 4.IH-Medical, Image House A/SCopenhagenDenmark

Personalised recommendations