Using Image Segments in PicSOM CBIR System

  • Mats Sjöberg
  • Jorma Laaksonen
  • Ville Viitaniemi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)

Abstract

The content-based image retrieval (CBIR) system PicSOM uses a variety of low-level visual features for indexing an image database. In this paper we describe the implementation of segmentation into the PicSOM framework. That is, we have modified the system to use image segments as a supplement to entire images in order to improve the retrieval accuracy. In a series of experiments, we compare this new method to the baseline PicSOM system. The results confirm that using both segments and entire images together always increases the precision of retrieval.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ma, W.Y., Manjunath, B.S.: NeTra: a toolbox for navigating large image databases. Multimedia Systems 7 (1999) 184–198CrossRefGoogle Scholar
  2. 2.
    Smith, J.R., Chang, S.F.: VisualSEEk: A fully automated content-based image query system. In: Proceedings of the 4th International ACM Multimedia Conference (ACM Multimedia’ 96), Boston, MA (1996) 87–98Google Scholar
  3. 3.
    Carson, C., Belongie, S., Greenspan, H., Malik, J.: Color-and texture-based image segmentation using EM and its application to content based image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (2002) To appear in August 2002.Google Scholar
  4. 4.
    Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2001) 947–963CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Wang, J.Z.: Looking beyond region boundaries: Region-based image retrieval using fuzzy feature matching. In: Multimedia Content-Based Indexing and Retrieval Workshop, September 24–25, INRIA Rocquencourt, France (2001)Google Scholar
  6. 6.
    Dimai, A.: Invariant scene description based on salient regions for preattentive similarity assessment. In: 10th International Conference on Image Analysis and Processing (ICIAP), September 27–29, Venice, Italy (1999) 957–962Google Scholar
  7. 7.
    Laaksonen, J., Koskela, M., Oja, E.: PicSOM—Self-organizing image retrieval with MPEG-7 content descriptions. IEEE Transactions on Neural Networks, Special Issue on Intelligent Multimedia Processing 13 (2002) 841–853Google Scholar
  8. 8.
    Kohonen, T.: Self-Organizing Maps. Third edn. Volume 30 of Springer Series in Information Sciences. Springer-Verlag (2001)Google Scholar
  9. 9.
    Koikkalainen, P.: Progress with the tree-structured self-organizing map. In: 11th European Conference on Artificial Intelligence, European Committee for Artificial Intelligence (ECCAI) (1994)Google Scholar
  10. 10.
    Chang, N.S., Fu, K.S.: Query-by-Pictorial-Example. IEEE Transactions on Software Engineering 6 (1980) 519–524CrossRefGoogle Scholar
  11. 11.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. Computer Science Series. McGraw-Hill (1983)Google Scholar
  12. 12.
    Stricker, M., Orengo, M.: Similarity of color images. In: Storage and Retrieval for Image and Video Databases III (SPIE). Volume 2420 of SPIE Proceedings Series., San Jose, CA, USA (1995) 381–392Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Mats Sjöberg
    • 1
  • Jorma Laaksonen
    • 1
  • Ville Viitaniemi
    • 1
  1. 1.Laboratory of Computer and Information ScienceHelsinki University of TechnologyFinland

Personalised recommendations