A 3D-Polar Coordinate Colour Representation Well Adapted to Image Analysis

  • Allan Hanbury
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2749)


Representations of the RGB space in terms of 3D-polar coordinates (hue, saturation and brightness) are often used in image analysis. The literature describes a large number of similar coordinate systems (HLS, HSV, etc.). We show that the reason for the existence of so many systems is a poor definition of the saturation coordinate which makes it dependent on the brightness function used, and hence poorly suited to image analysis applications. An improved saturation measurement which (1) always has small values for achromatic colours and (2) is independent of the brightness function is derived.


  1. 1.
    Kender, J.R.: Saturation, hue and normalised color: Calculation, digitization effects, and use. Technical report, Department of Computer Science, Carnegie-Mellon University (1976)Google Scholar
  2. 2.
    Hanbury, A., Serra, J.: A 3D-polar coordinate colour representation suitable for image analysis. Technical Report PRIP-TR-077, TU Wien (2002)Google Scholar
  3. 3.
    Levkowitz, H., Herman, G.T.: GLHS: A generalised lightness, hue and saturation color model. CVGIP: Graphical Models and Image Processing 55 (1993) 271–285CrossRefGoogle Scholar
  4. 4.
    Commission Internationale de l’Éclairage: International Lighting Vocabulary. 4th edn. Number 17.4. CIE (1987)Google Scholar
  5. 5.
    Smith, A.R.: Color gamut transform pairs. Computer Graphics 12 (1978) 12–19CrossRefGoogle Scholar
  6. 6.
    Demarty, C.H., Beucher, S.: Color segmentation algorithm using an HLS transformation. In: Proceedings of the International Symposium on Mathematical Morphology (ISMM’ 98). (1998) 231–238Google Scholar
  7. 7.
    Demarty, C.H.: Segmentation et Structuration d’un Document Vidéo pour la Caractérisation et l’Indexation de son Contenu Sémantique. PhD thesis, CMM, Ecole des Mines de Paris (2000)Google Scholar
  8. 8.
    Smith, J.R.: Integrated Spatial and Feature Image Systems: Retrieval, Compression and Analysis. PhD thesis, Columbia University (1997)Google Scholar
  9. 9.
    Stokman, H., Gevers, T.: Error propagation due to color space transforms. In: Proceedings of SPIE, San Jose. (2000)Google Scholar
  10. 10.
    Tico, M., Haverinen, T., Kuosmanen, P.: A method of color histogram creation for image retrieval. In: Proceedings of NORSIG. (2000)Google Scholar
  11. 11.
    Hanbury, A.: Circular statistics applied to colour images. In: Proceedings of the Computer Vision Winter Workshop 2003. (2003) 55–60Google Scholar
  12. 12.
    Hanbury, A., Serra, J.: Mathematical morphology in the HLS colour space. In Cootes, T., Taylor, C, eds.: Proceedings of the British Machine Vision Conference 2001, BMVA (2001) 451–460Google Scholar
  13. 13.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 1349–1380CrossRefGoogle Scholar
  14. 14.
    Risson, V.: Application de la morphologie mathématique à l’analyse des conditions d’éclairage des images couleur. PhD thesis, CMM, Ecole des Mines de Paris (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Allan Hanbury
    • 1
  1. 1.Pattern Recognition and Image Processing GroupVienna University of TechnologyViennaAustria

Personalised recommendations