Advertisement

Graph Coloring and the Immersion Order

  • Faisal N. Abu-Khzam
  • Michael A. Langston
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2697)

Abstract

The relationship between graph coloring and the immersion order is considered. Vertex connectivity, edge connectivity and related issues are explored. These lead to the conjecture that, if G requires at least t colors, then G must have immersed within it K t, the complete graph on t vertices. Evidence in support of such a proposition is presented. For each fixed value of t, there can be only a finite number of minimal counterexamples. These counterexamples are characterized based on Kempe chains, connectivity, cutsets and degree bounds. It is proved that minimal counterexamples must, if any exist, be both 4-vertex-connected and t-edge-connected.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béla Bollobás. Extremal Graph Theory. Academic Press, 1978.Google Scholar
  2. 2.
    H. D. Booth, R. Govindan, M. A. Langston, and S. Ramachandramurthi. Sequential and parallel algorithms for K 4 immersion testing. Journal of Algorithms, 30:344–378, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Catlin. Hajös graph-coloring conjecture: variation and counterexamples. JCTB, 26:268–274, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. A. Dirac. A property of 4-chromatic graphs and some remarks on critical graphs. J. London Math. Soc., 27:85–92, 1952.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Duchet and H. Meyniel. On Hadwiger’s number and the stability number. Annals of Discrete Math., 13:71–74, 1982.zbMATHMathSciNetGoogle Scholar
  6. 6.
    P. Erdös and S. Fajtlowicz. On the conjecture of Hajös. Combinatorica, 1:141–143, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. R. Fellows and M. A. Langston. Nonconstructive tools for proving polynomial-time decidability. Journal of the ACM, 35:727–739, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. R. Fellows and M. A. Langston. On well-partial-order theory and its application to combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics, 5:117–126, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. R. Fellows and M. A. Langston. On search, decision and the efficiency of polynomial-time algorithms. Journal of Computer and Systems Sciences, 49:769–779, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    H. Hadwiger. Über eine klassifikation der streckenkomplexe. Vierteljahrsschr. Naturforsch. Ges. Zürich, 88:133–142, 1943.MathSciNetGoogle Scholar
  11. 11.
    G. Hajös. Über eine konstruktion nicht n-farbbarer graphen. Wiss. Z. Martin Luther Univ. Halle-Wittenberg Math. Naturwiss. Reihe, 10:116–117, 1961.Google Scholar
  12. 12.
    F. Harary. Graph Theory. Addison-Wesley, 1969.Google Scholar
  13. 13.
    K. Kawarabayashi. On the connectivity of minimal-counterexamples to Hadwiger’s conjecture, to appear.Google Scholar
  14. 14.
    K. Kawarabayashi and B. Toft. Any 7-chromatic graph has K 7 or K 4,4 as a minor. Combinatorica, to appear.Google Scholar
  15. 15.
    A. B. Kempe. How to color a map with four colours without coloring adjacent districts the same color. Nature, 20:275, 1879.CrossRefGoogle Scholar
  16. 16.
    N. G. Kinnersley. Immersion order obstruction sets. Congressus Numerantium, 98:113–123, 1993.zbMATHMathSciNetGoogle Scholar
  17. 17.
    M. A. Langston and B. C. Plaut. Algorithmic applications of the immersion order. Discrete Mathematics, 182:191–196, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    W. Mader. Homomorphiesätze für graphen. Math. Ann., 178:154–168, 1968.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    N. Robertson and P.D. Seymour. Graph minors XVI: Wagner’s conjecture. Journal of Combinatorial Theory, Series B, to appear.Google Scholar
  20. 20.
    N. Robertson, P.D. Seymour, and R. Thomas. Hadwiger’s conjecture for K 6-free graphs. Combinatorica, 13:279–361, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    T.L. Saaty and P.C. Kainen. The Four-Color Problem. Dover Publications, Inc., 1986.Google Scholar
  22. 22.
    B. Toft. Private communication, 2001.Google Scholar
  23. 23.
    B. Toft. On separating sets of edges in contraction-critical graphs. Math. Ann., 196:129–147, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    B. Toft. On critical subgraphs of colour critical graphs. Discrete Math., 7:377–392, 1974.zbMATHMathSciNetGoogle Scholar
  25. 25.
    B. Toft. Colouring, stable sets and perfect graphs. In R. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics, volume 2, chapter 4, pages 233–288. Elsevier Science B.V., 1995.Google Scholar
  26. 26.
    K. Wagner. Beweis einer abschwächung der Hadwiger-vermutung. Math. Ann., 153:139–141, 1964.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    D. B. West. Introduction to Graph Theory. Prentice Hall, 1996.Google Scholar
  28. 28.
    H. Whitney and W.T. Tutte. Kempe chains and the four colour problem. Utilitas Math., 2:241–281, 1972.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Faisal N. Abu-Khzam
    • 1
  • Michael A. Langston
    • 1
  1. 1.Department of Computer ScienceUniversity of TennesseeKnoxvilleUSA

Personalised recommendations