Advertisement

Oracle Circuits for Branching-Time Model Checking

  • Philippe Schnoebelen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2719)

Abstract

A special class of oracle circuits with tree-vector form is introduced. It is shown that they can be evaluated in deterministic polynomial-time with a polylog number of adaptive queries to an NP oracle. This framework allows us to evaluate the precise computational complexity of model checking for some branching-time logics where it was known that the problem is NP-hard and coNP-hard.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Castro and C. Seara. Complexity classes between Θ pk and Δ pk. RAIRO Informatique Théorique et Applications, 30(2):101–121, 1996.zbMATHMathSciNetGoogle Scholar
  2. 2.
    E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Programming Languages and Systems, 8(2):244–263, 1986.zbMATHCrossRefGoogle Scholar
  3. 3.
    E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.Google Scholar
  4. 4.
    S. Demri and Ph. Schnoebelen. The complexity of propositional linear temporal logics in simple cases. Information and Computation, 174(1):84–103, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, vol. B, chapter 16, pp 995–1072. Elsevier Science, 1990.Google Scholar
  6. 6.
    E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal logic of branching time. Journal of Computer and System Sciences, 30(1):1–24, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” revisited: On branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    E. A. Emerson and Chin-Laung Lei. Modalities for model checking: Branching time logic strikes back. Science of Computer Programming, 8(3):275–306, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    G. Gottlob. NP trees and Carnap’s modal logic. J. ACM, 42(2):421–457, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, vol. A, chapter 2, pp 67–161. Elsevier Science, 1990.Google Scholar
  11. 11.
    R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4):255–299, 1990.CrossRefGoogle Scholar
  12. 12.
    O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model checking. J. ACM, 47(2):312–360, 2000.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking CTL + and FCTL is hard. In Proc. 4th Int. Conf. Foundations of Software Science and Computation Structures (FOSSACS’2001), vol. 2030 of Lect. Notes Comp. Sci., pp 318–331. Springer, 2001.CrossRefMathSciNetGoogle Scholar
  14. 14.
    F. Laroussinie, N. Markey, and Ph. Schnoebelen. On model checking durational Kripke structures. In Proc. 5th Int. Conf. Foundations of Software Science and Computation Structures (FOSSACS’2002), vol. 2303 of Lect. Notes in Comp. Sci., pp 264–279. Springer, 2002.CrossRefMathSciNetGoogle Scholar
  15. 15.
    C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.Google Scholar
  16. 16.
    Ph. Schnoebelen. The complexity of temporal logic model checking (invited lecture). In Advances in Modal Logic, papers from 4th Int. Workshop on Advances in Modal Logic (AiML’2002). World Scientific, 2003. To appear.Google Scholar
  17. 17.
    A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. J. ACM, 32(3):733–749, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Proc. 1st IEEE Symp. Logic in Computer Science (LICS’86), pp 332–344. IEEE Comp. Soc. Press, 1986.Google Scholar
  19. 19.
    K. W. Wagner. More complicated questions about maxima and minima, and some closures of NP. Theor. Comp. Sci., 51(1–2):53–80, 1987.zbMATHCrossRefGoogle Scholar
  20. 20.
    K. W. Wagner. Bounded query classes. SIAM J. Computing, 19(5):833–846, 1990.zbMATHCrossRefGoogle Scholar
  21. 21.
    C. B. Wilson. Relativized NC. Mathematical Systems Theory, 20(1):13–29, 1987.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Philippe Schnoebelen
    • 1
  1. 1.Lab. Spécification & VérificationENS de Cachan & CNRS UMR 8643Cachan CedexFrance

Personalised recommendations