Advertisement

Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals

  • Alain Trouvé
  • Laurent Younes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1842)

Abstract

This paper focuses on matching 1D structures by variational methods. We provide rigorous rules for the construction of the cost function, on the basis of an analysis of properties which should be satisfied by the optimal matching. A new, exact, dynamic programming algorithm is then designed for the minimization. We conclude with experimental results on shape comparison.

keywords

Shape Shape representation and recognition Elastic matching Calculus of variations dynamic programming 

References

  1. 1.
    R. Basri, L. Costa, D. Geiger, AND D. Jacobs, Determining the similarity of deformable shapes, in IEEE Workshop on Physics based Modeling in Computer Vision, 1995, pp. 135–143.Google Scholar
  2. 2.
    I. Cohen, N. Ayache, AND P. Sulger, Tracking points on deformable objects using curvature information, in Computer Vision-ECCV’92, G. Sandini, ed.., 1992, pp. 458–466.Google Scholar
  3. 3.
    S. Cohen, G. Elber, AND B. Bar-Yehuda, Matching of freeform curves, Computer-Aided design, 29 (1997), pp. 369–378.CrossRefGoogle Scholar
  4. 4.
    B. Dacorogna, Direct methods in the calculus of variations, Springer, 1989.Google Scholar
  5. 5.
    D. Geiger, A. Gupta, A Costa, L, AND J. Vlontzos, Dynamic programming for detecting, tracking and matching deformable contours, IEEE PAMI, 17 1995, pp. 295–302.Google Scholar
  6. 6.
    W. Gorman, J, R. Mitchell, AND P. Kuel, F, Partial shape recognition using dynamic programming, IEEE PAMI, 10 1988.Google Scholar
  7. 7.
    S. Marques, J AND J. Abrantes, A, Shape alignment-optimal initial point and pose estimation, Pattern Recogn. Letters, 1997.Google Scholar
  8. 8.
    P. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press, 1995.Google Scholar
  9. 9.
    A. Picaz AND I. Dinstein, Matching of partially occulted planar curves, Pattern Recognition, 28 1995, pp. 199–209.CrossRefGoogle Scholar
  10. 10.
    M. Piccioni, S. Scarlatti, AND A. Trouv, A variational problem arising from speech recognition, SIAM Journ. Appl. Math., 58 1998), pp. 753–771.zbMATHCrossRefGoogle Scholar
  11. 11.
    H. Sakoe AND S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Trans. Accoustic, Speech and Signal Proc., 26 1978, pp. 43–49.zbMATHCrossRefGoogle Scholar
  12. 12.
    A. Trouvé AND L. Younes, On a class of diffeomorphic matching problems in one dimension, tech. rep., LAGA (UMR CNRS 7593), Institut Galilée, Université Paris XIII, 1998. To appear in SIAM J. Optimization and Control. 579, 579Google Scholar
  13. 13.
    L. Younes, Computable elastic distances between shapes, SIAM J. Appl. Math, 58 (1998), pp. 565–586.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Alain Trouvé
    • 1
  • Laurent Younes
    • 2
  1. 1.LAGA (UMR CNRS 7593), Institut GaliléeUniversité Paris XIIIVilletaneuse
  2. 2.CMLA (CNRS, URA 1611)Ecole Normale Supérieure de CachanCachan Cedex

Personalised recommendations