Image Segmentation by Nonparametric Clustering Based on the Kolmogorov-Smirnov Distance

  • Eric J. Pauwels
  • Greet Frederix
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1843)


In this paper we introduce a non-parametric clustering algorithm for 1-dimensional data. The procedure looks for the simplest (i.e. smoothest) density that is still compatible with the data. Compatibility is given a precise meaning in terms of the Kolmogorov-Smirnov statistic. After discussing experimental results for colour segmentation, we outline how this proposed algorithm can be extended to higher dimensions.


Image Segmentation Gaussian Mixture Model Independent Component Analysis Salient Region Colour Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Carson, S. Belongie, H. Greenspan, and J. Malik: Region-Based Image Querying. Proc. of CVPR’97 Workshop on Content-Based Access of Image and Video Libraries.Google Scholar
  2. 2.
    C. Carson, S. Belongie, H. Greenspan, and J. Malik: Blobworld: Image Segmentation using Expectation-Maximization and its application to Image Querying. Submitted to PAMI.Google Scholar
  3. 3.
    G. Coleman and H.C. Andrews: Image segmentation by clustering. Proc. IEEE 67, 1979, pp. 773–785.Google Scholar
  4. 4.
    A.P. Dempster, N.M. Laird and D.R. Rubin: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. Royal Statist. Soc.Ser B, 39 (1977), pp. 1–38.zbMATHMathSciNetGoogle Scholar
  5. 5.
    R.O. Duda and P.E. Hart: Pattern Classification and Scene Analysis. Wiley 1973.Google Scholar
  6. 6.
    H. Frigui and R. Krishnapuram: Clustering by Competitive Agglomeration. Pattern Recognition, Vol. 30, No. 7, ppe. 1109–1119, 1997.CrossRefGoogle Scholar
  7. 7.
    K. Fukunaga: Introduction to Statistical Pattern Recognition. Academic Press, 1990.Google Scholar
  8. 8.
    I.J. Good and R.A. Gaskins: Nonparametric roughness penalties for probability densities. Biometrika 58, 255–77, 1971.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A.K. Jain and R.C. Dubes: Algorithms for Clustering Data. Prentice Hall, 1988.Google Scholar
  10. 10.
    Leonard Kaufman and Peter J. Rousseeuw: Finding Groups in Data: An Introduction to Cluster Analysis. J. Wiley and Sons, 1990.Google Scholar
  11. 11.
    Brian S. Everitt: Cluster Analysis. Edward Arnold, 1993.Google Scholar
  12. 12.
    A. Mood, F. Graybill, D. Boes: Introduction to the Theory of Statistics. McGraw-Hill, 1974, 3rd Edition.Google Scholar
  13. 13.
    E.J. Pauwels, P. Fiddelaers and F. Mindru: Fully Unsupervised Clustering using Center-Surround Receptive Fields with Applications to Colour-Segmentation. Proc. of the 7th. International Conference on Computer Analysis of Images and Patterns. Kiel, Germany, Sept 10–12, 1997.Google Scholar
  14. 14.
    E.J. Pauwels and G. Frederix: Non-parametric Clustering for Segmentation and Grouping. Proc. of International Workshop on Very Low Bitrate Video Coding VLBV’98, Urbana, IL, Oct. 1998. pp. 133–136.Google Scholar
  15. 15.
    E.J. Pauwels and G. Frederix: Finding Salient Regions in Images. Computer Vision and Image Understanding, Vol. 75, Nos 1/2, July/August 1999, pp. 73–85.CrossRefGoogle Scholar
  16. 16.
    J. Shi and J. Malik: Normalized Cuts and Image Segmentation. Proc. IEEE Conf. oon Comp. Vision and Pattern Recognition, San Juan, Puerto Rico, JunGoogle Scholar
  17. 17.
    W. Press, B. Flannery, S. Teukolsky, W. Vetterling: Numerical Recipes. Cambridge University Press, 1989.zbMATHGoogle Scholar
  18. 18.
    J.R. Thompson and R.A. Tapia: Nonparametric Function Estimation, Modeling and Simulation. SIAM, 1990.Google Scholar
  19. 19.
    John L. Troutman: Variational Calculus with Elementary Convexity. UTM, Springer-Verlag, 1983.Google Scholar
  20. 20.
    V.N. Vapnik: The Nature of Statistical Learning Theory. Springer, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Eric J. Pauwels
    • 1
    • 2
  • Greet Frederix
    • 2
    • 3
  1. 1.Centre for Mathematics and Computer Science (CWI)AmsterdamThe Netherlands
  2. 2.ESAT-PSI, K.U.LeuvenHeverleeBelgium
  3. 3.Dept. of MathematicsK.U.LeuvenHeverleeBelgium

Personalised recommendations