Phosphatidylcholine-Preferring Phospholipase C from B. cereus. Function, Structure, and Mechanism

  • Paul J. Hergenrother
  • Stephen F. Martin
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 211)


The PLC class of enzymes has been studied extensively over the past 15–20 years because of their involvement in signaling pathways in which extracellular messages are delivered to the cell to induce a response. Of the PLC isoenzymes, the PI-PLCs have perhaps been examined in the greatest detail because of their key role in initiating cellular response by hydrolyzing the phosphodiester bond of phosphatidylinositols and their phosphorylated derivatives to release the second messengers IP3 and DAG. However, the extended release of DAG that is critical to maintaining the stimulatory response arises from hydrolysis of the more abundant phosphatidylcholine by PC-PLC or by PLD followed by phosphatidic acid phosphatase. Because no eukaryotic PC-PLC has been cloned or isolated in pure form, the phosphatidylcholine-preferring PLC from B. cereus (PLCBc) has emerged as a focal point for investigation and as a putative model for mammalian PC-PLCs. The similarity of the active site of PLCBc with other phosphoryl transfer enzymes has also served as a stimulus for mechanistic studies. The present account details recent studies of this important member of the PLC superfamily of enzymes.


Phospholipase Phospholipid Mechanism Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Liscovitch M (1992) TIBS 17:393Google Scholar
  2. 2.
    Asaoka Y, Nakamura S, Yoshida K, Nishizuka Y (1992) TIBS 17:414Google Scholar
  3. 3.
    Exton JH (1997) Eur J Biochem 243:10CrossRefGoogle Scholar
  4. 4.
    Lambright D, Sondek J, Bohm A, Skiba N, Hamm H, Sigler P (1996) Nature 379:311CrossRefGoogle Scholar
  5. 5.
    Lee S, Rhee S (1995) Curr Opin Cell Biol 7:183CrossRefGoogle Scholar
  6. 6.
    Kishimoto A, Takai Y, Mori T, Kikkawa U, Nishizuka Y (1980) J Biol Chem 255:2273Google Scholar
  7. 7.
    Bell R (1986) Cell 45:631CrossRefGoogle Scholar
  8. 8.
    Nishizuka Y (1989) Nature 334:661CrossRefGoogle Scholar
  9. 9.
    Billah M, Anthes J (1990) Biochem J 269:281Google Scholar
  10. 10.
    Exton JH (1994) Biochim Biophys Acta 1212:26Google Scholar
  11. 11.
    Exton J (1998) Biochim Biophys Acta 1436:105Google Scholar
  12. 12.
    Bruzik KS, Tsai M-D (1994) Bioorg Med Chem 2:49CrossRefGoogle Scholar
  13. 13.
    Gassler CS, Ryan M, Liu T, Oh G, Heinz DW (1997) Biochemistry 36:12,802CrossRefGoogle Scholar
  14. 14.
    Hondal RJ, Zhao Z, Kravchuk AV, Liao H, Riddle SR, Yue X, Bruzik KS, Tsai M-D (1998) Biochemistry 37:4568CrossRefGoogle Scholar
  15. 15.
    Heinz DW (1999) Angew Chem Int Ed 38:2348CrossRefGoogle Scholar
  16. 16.
    Heinz DW, Ryan M, Smith MP, Weaver LH, Keana JF, Griffith OH (1996) Biochemistry 35:9496CrossRefGoogle Scholar
  17. 17.
    Williams RL, Katan M (1996) Current Biol 4:1387Google Scholar
  18. 18.
    Grobler JA, Essen LO, Williams RL, Hurley JH (1996) Nat Struct Biol 3:788CrossRefGoogle Scholar
  19. 19.
    Essen LO, Perisic O, Katan M, Wu Y, Roberts MF, Williams RL (1997) Biochemistry 36:1704CrossRefGoogle Scholar
  20. 20.
    McGaughey C, Chu H (1948) J Gen Microbiol 2:334Google Scholar
  21. 21.
    Little C, Aurebekk B, Otnaess A-B (1975) FEBS Letters 52:175CrossRefGoogle Scholar
  22. 22.
    Guddal PH, Johansen T, Schulstad K, Little C (1989) J Bacteriol 171:5702Google Scholar
  23. 23.
    Clark MA, Shorr RGL, Bomalaski JS (1986) Biochem Biophys Res Commun 140:114CrossRefGoogle Scholar
  24. 24.
    van Dijk M, Muriana F, de Widt J, Hilkmann H, van Blitterswijk W (1997) J Biol Chem 272:11,011CrossRefGoogle Scholar
  25. 25.
    Mulcahy L, Smithe M, Stacey D (1985) Nature 313:241CrossRefGoogle Scholar
  26. 26.
    Garcia de Herreros A, Dominguez I, Diaz-Meco MT, Graziani G, Cornet ME, Guddal PH, Johansen T, Moscat J (1991) J Biol Chem 266:6825Google Scholar
  27. 27.
    Forsdahl K, Larsen T (1995) J Mol Cell Cardiol 27:893CrossRefGoogle Scholar
  28. 28.
    Reynolds LJ, Washburn WN, Deems RA, Dennis EA (1991) Methods Enzymol 197:3CrossRefGoogle Scholar
  29. 29.
    Kurioka S (1968) J Biochem 63:678Google Scholar
  30. 30.
    Kurioka S, Matsuda M (1976) Anal Biochem 75:281CrossRefGoogle Scholar
  31. 31.
    Snyder WR (1987) Anal Biochem 164:199CrossRefGoogle Scholar
  32. 32.
    Cox J, Snyder W, Horrocks L (1979) Chem Phys Lipids 25:369CrossRefGoogle Scholar
  33. 33.
    Hergenrother PJ, Spaller MR, Haas MK, Martin SF (1995) Anal Biochem 229:313CrossRefGoogle Scholar
  34. 34.
    Martin SF, Hergenrother PJ (1999) Biochemistry 38:4403CrossRefGoogle Scholar
  35. 35.
    Martin SF, Spaller MR, Hergenrother PJ (1996) Biochemistry 35:12,970Google Scholar
  36. 36.
    Martin SF, Hergenrother PJ (1998) Biochemistry 37:5755CrossRefGoogle Scholar
  37. 37.
    Hergenrother PJ, Martin SF (1997) Anal Biochem 251:45CrossRefGoogle Scholar
  38. 38.
    Martin SF, Hergenrother PJ (1998) Bioorg Med Chem Lett 8:593CrossRefGoogle Scholar
  39. 39.
    Bhamidipati SP, Hamilton JA (1993) J Biol Chem 268:2431Google Scholar
  40. 40.
    Tan CA, Roberts MF (1996) Biochim Biophys Acta 1298:58Google Scholar
  41. 41.
    Bartlett GR (1959) J Biol Chem 234:466Google Scholar
  42. 42.
    Snyder W (1987) Biochim Biophys Acta 920:155Google Scholar
  43. 43.
    El-Sayed MY, DeBose CD, Coury LA, Roberts MF (1985) Biochim Biophys Acta 837:325Google Scholar
  44. 44.
    Massing U, Eibl H (1994) Substrates for phospholipase C and sphingomyelinase from Bacillus cereus. In: Woolley P, Petersen SB (eds) Lipases. Their structure, biochemistry and application. Cambridge University Press, Cambridge, p 225Google Scholar
  45. 45.
    Hansen S, Hough E, Svensson LA, Wong Y-L, Martin SF (1993) J Mol Biol 234:179CrossRefGoogle Scholar
  46. 46.
    Ries U, Fleer EAM, Unger C, Eibl H (1992) Biochim Biophys Acta 1125:166Google Scholar
  47. 47.
    Little C (1981) Acta Chem Scan Ser B 35:39CrossRefGoogle Scholar
  48. 48.
    Little C (1977) Acta Chem Scand B31:267CrossRefGoogle Scholar
  49. 49.
    El-Sayed MY, Roberts MF (1985) Biochim Biophys Acta 831:133Google Scholar
  50. 50.
    Gabriel NE, Agman NV, Roberts MF (1987) Biochemistry 26:7409CrossRefGoogle Scholar
  51. 51.
    Lewis K, Bian J, Sweeney A, Roberts M (1990) Biochemistry 29:9962CrossRefGoogle Scholar
  52. 52.
    Martin SF, Pitzer GE (2000) Biochim Biophys Acta 1464:104CrossRefGoogle Scholar
  53. 53.
    Roberts MF, Otnaess A-B, Kensil CA, Dennis EA (1978) J Biol Chem 253:1252Google Scholar
  54. 54.
    Martin SF, Wong Y-L, Wagman AS (1994) J Org Chem 59:4821CrossRefGoogle Scholar
  55. 55.
    Amtmann E (1996) Drugs Exp Clin Res 22:287Google Scholar
  56. 56.
    Muller-Decker K (1989) Biochem Biophys Res Commun 162:198CrossRefGoogle Scholar
  57. 57.
    Kozawa O, Suzuki A, Kaida T, Tokuda H, Uematsu T (1997) J Biol Chem 272:25,099CrossRefGoogle Scholar
  58. 58.
    Miao JY, Araki S, Hayashi H (1997) Endothelium 5:297CrossRefGoogle Scholar
  59. 59.
    Li Y, Maher P, Schubert D (1998) Proc Natl Acad Sci USA 95:7748CrossRefGoogle Scholar
  60. 60.
    Piettre SR, Ganzhorn A, Hoflack J, Islam K, Hornsperger J-M (1997) J Am Chem Soc 119: 3201CrossRefGoogle Scholar
  61. 61.
    Martin SF, Follows BC, Hergenrother PJ, Franklin CL (2000) J Org Chem 65:4509CrossRefGoogle Scholar
  62. 62.
    Hough E, Hansen LK, Birkness B, Jynge K, Hansen S, Hordvik A, Little C, Dodson E, Derewenda Z (1989) Nature 338:357CrossRefGoogle Scholar
  63. 63.
    Wilcox D (1996) Chem Rev 96:2435CrossRefGoogle Scholar
  64. 64.
    Hergenrother PJ (1999) PhD Dissertation. The University of TexasGoogle Scholar
  65. 65.
    Hansen S, Hansen LK, Hough E (1992) J Mol Biol 225:543CrossRefGoogle Scholar
  66. 66.
    Hansen S, Hansen LK, Hough E (1993) J Mol Biol 231:870CrossRefGoogle Scholar
  67. 67.
    Kim EE, Wyckoff HW (1991) J Mol Biol 218:449CrossRefGoogle Scholar
  68. 68.
    Steinthorsdottir V, Fridriksdottir V, Gunnarsson E, Andresson O (1998) FEMS Microbiol Lett 158:17CrossRefGoogle Scholar
  69. 69.
    Volbeda A, Lahm A, Sakiyama F, Suck D (1991) EMBO J 10:1607Google Scholar
  70. 70.
    Romier C, Dominguez R, Lahm A, Dahl O, Suck D (1998) Proteins Struct Func Gen 32:414CrossRefGoogle Scholar
  71. 71.
    Dougherty DA (1996) Science 271:163CrossRefGoogle Scholar
  72. 72.
    Burley SK, Petsko GA (1988) Adv Protein Chem 39:125CrossRefGoogle Scholar
  73. 73.
    Ma JC, Dougherty DA (1997) Chem Rev 97:1303CrossRefGoogle Scholar
  74. 74.
    Basran J, Mewies M, Mathews FS, Scrutton N (1997) Biochemistry 36:1989CrossRefGoogle Scholar
  75. 75.
    Ting A, Shin I, Lucero C, Schultz PG (1998) J Am Chem Soc 120:7135CrossRefGoogle Scholar
  76. 76.
    Wouters J (1998) Protein Sci 7:2472Google Scholar
  77. 77.
    Gallivan JP, Dougherty DA (1999) Sci Natl Acad Sci USA 96:9459CrossRefGoogle Scholar
  78. 78.
    Martin SF, Follows BC, Hergenrother PJ, Trotter BK (2000) Biochemistry 39:3410CrossRefGoogle Scholar
  79. 79.
    Klabunde T, Strater N, Frohlich R, Witzel H, Krebs B (1996) J Mol Biol 259:737CrossRefGoogle Scholar
  80. 80.
    Beese LS, Steitz TA (1991) EMBO J 10:25Google Scholar
  81. 81.
    Pollack S, Atack J, Knowles M, McAllister G, Ragan C, Baker R, Fletcher S, Iversen L, Broughton H (1994) Sci Natl Acad Sci USA 91:5766CrossRefGoogle Scholar
  82. 82.
    Kelly N, Giroux EL, Guqiang L, Kantrowitz ER (1996) Biochem Biophys Res Commun 219:848CrossRefGoogle Scholar
  83. 83.
    Viadiu H, Aggarwal AK (1998) Nature Struct Biol 5:910CrossRefGoogle Scholar
  84. 84.
    Strater N, Lipscomb WN (1995) Biochemistry 34:9200CrossRefGoogle Scholar
  85. 85.
    Heikinheimo P, Pohjanjoki P, Helminen A, Tasanen M, Cooperman B, Goldman A, Baykov A, Lahti R (1996) Eur J Biochem 239:138CrossRefGoogle Scholar
  86. 86.
    Strater N, Lipscomb WN, Klabunde T, Krebs B (1996) Angew. Chem Int Ed Engl 35:2024CrossRefGoogle Scholar
  87. 87.
    Hough E, Hansen S (1994) Structural aspects of phospholipase C from Bacillus cereus and its reaction mechanism. In: Woolley P, Petersen SB (eds) Lipases. Their structure, biochemistry and application. University Press, Cambridge, Cambridge, p 95Google Scholar
  88. 88.
    Mildvan AS (1981) Phil Trans R Soc Lond B 293:65CrossRefGoogle Scholar
  89. 89.
    Knowles JR (1991) Nature 350:121CrossRefGoogle Scholar
  90. 90.
    Vazeux G, Wang J, Corvol P, Llorens-Cortes C (1996) J Biol Chem 271:9069CrossRefGoogle Scholar
  91. 91.
    Ma L, Kantrowitz ER (1996) Biochemistry 35:2394CrossRefGoogle Scholar
  92. 92.
    Kiefer L, Fierke C (1994) Biochemistry 33:15,233Google Scholar
  93. 93.
    Byberg JR, Jørgensen FS, Hansen S, Hough E (1992) Proteins Struct Func Gen 12:331CrossRefGoogle Scholar
  94. 94.
    Tan CA, Roberts MF (1998) Biochemistry 37:4275CrossRefGoogle Scholar
  95. 95.
    da Graca Thrige D, Buur JR, Jorgensen FS (1997) Biopolymers 42:319CrossRefGoogle Scholar
  96. 96.
    Ikeda K, Inoue S, Amasaki C, Teshima K, Ikezawa H (1991) J Biochem 110:88Google Scholar
  97. 97.
    Inoue M, Yamada H, Yasukochi T, Kuroki R, Miki T, Horiuchi T, Imoto T (1992) Biochemistry 31:5545CrossRefGoogle Scholar
  98. 98.
    Bartik K, Redfield C, Dobson CM (1994) Biophys J 66:1180CrossRefGoogle Scholar
  99. 99.
    McIntosh LP, Hand G, Johnson PE, Joshi MD, Korner M, Plesniak LA, Ziser L, Wakarchuk WW, Withers SG (1996) Biochemistry 35:9958CrossRefGoogle Scholar
  100. 100.
    Sancho J, Serrano L, Fersht AR (1992) Biochemistry 31:2253CrossRefGoogle Scholar
  101. 101.
    Joshi HW, Meier MS (1996) J Am Chem Soc 118:12,038CrossRefGoogle Scholar
  102. 102.
    Sundell S, Hansen S, Hough E (1994) Protein Eng 7:571CrossRefGoogle Scholar
  103. 103.
    Lipscomb W, Strater N (1996) Chem Rev 96:2375CrossRefGoogle Scholar
  104. 104.
    Cha J, Pedersen M, Auld D (1996) Biochemistry 35:15,831CrossRefGoogle Scholar
  105. 105.
    Christianson D (1991) Structural biology of zinc. In: Anfinsen C, Richards F, Edsall J, Eisenberg D (eds) Advances in protein chemistry. Metalloproteins: structural aspects. vol 42. Academic Press, p 281Google Scholar
  106. 106.
    Mildvan AS (1997) Proteins: Struct Func Gen 29:401CrossRefGoogle Scholar
  107. 107.
    Adams JA (1996) Biochemistry 35:10,949CrossRefGoogle Scholar
  108. 108.
    Leichus BN, Blanchard JS (1992) Biochemistry 31:3065CrossRefGoogle Scholar
  109. 109.
    Xiang B, Markham GD (1997) Arch Biochem Biophys 348:378CrossRefGoogle Scholar
  110. 110.
    Cook PF, Yoon M-Y, Hara S, McClure GD (1993) Biochemistry 32:1795CrossRefGoogle Scholar
  111. 111.
    Merkler DJ, Schramm VL (1993) Biochemistry 32:5792CrossRefGoogle Scholar
  112. 112.
    Izquierdo M, Stein R (1990) J Am Chem Soc 112:6054CrossRefGoogle Scholar
  113. 113.
    Harrison R, Chang B, Niedzwiecki L, Stein R (1992) Biochemistry 31:10,757CrossRefGoogle Scholar
  114. 114.
    Born T, Zheng R, Blanchard J (1998) Biochemistry 37:10,478CrossRefGoogle Scholar
  115. 115.
    Venkatasubban KS, Schowen RL (1984) CRC Critical Reviews in Biochemistry 17:1CrossRefGoogle Scholar
  116. 116.
    Burns RA Jr, Friedman JR, Roberts MF (1981) Biochemistry 20:5945CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Paul J. Hergenrother
    • 1
  • Stephen F. Martin
    • 1
  1. 1.Department of Chemistry and BiochemistryThe University of TexasAustinUSA

Personalised recommendations