A Parallel Approach to Row-Based VLSI Layout Using Stochastic Hill-Climbing

  • Matthew Newton
  • Ondrej Sýkora
  • Mark Withall
  • Imrich Vrt’o
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2718)


Parallel algorithms based on stochastic hill-climbing and parallel algorithms based on simple elements of a genetic algorithm for the one-sided bipartite crossing number problem, used in row-based VLSI layout, were investigated. These algorithms were run on a PVM cluster. The experiments show that the parallel approach does not bring faster computation but it does, however, much more importantly, bring a better quality solution to the problem, i.e. it generates drawings with lower numbers of pairwise edge crossings.


Genetic Algorithms Distributed Problem Solving Heuristic Search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Bastert, C. Matuszewski. (2001). Layered drawings of digraphs, In: Drawing Graphs, Methods and Models (eds. M. Kaufmann, D. Wagner), Lecture Notes in Computer Science 2025, Springer Verlag, 87–118.CrossRefGoogle Scholar
  2. 2.
    J. Dongarra, G.A. Geist, J.A. Kohl, P.M. Papadopoulos, S. Scott, V. Sunderam. HARNESS: Heterogeneous Adaptable Reconfigurable Networked Systems.
  3. 3.
    C. Demetrescu., I. Finocchi. (2001). Removing cycles for minimizing crossings. J. Experimental Algorithmics. To appear.Google Scholar
  4. 4.
    G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis. (1999). Graph Drawing: Algorithms for Visualization of Graphs. Prentice Hall.Google Scholar
  5. 5.
    P. Eades, N. Wormald. (1994). Edge crossings in drawings of bipartite graphs, Algorithmica, 11 379–403.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J.A. Gallian. (1989). A survey: recent results, conjectures and open problems in labelling graphs, J. Graph Theory 13 491–504.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    M.R. Garey, D.S. Johnson. (1983). Crossing number is np -complete, SIAM J. Algebraic Discrete Meth., 4 312–316.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    E. Mäkinen, M. Sieranta. (1994). Genetic algorithms for drawing bipartite graphs, International J. Computer Mathematics 53 157–166.zbMATHCrossRefGoogle Scholar
  9. 9.
    C. Matuszewski, R. Schönfeld, P. Molitor. (1999). Using sifting for k-layer straightline crossing minimization, in: Proc. 7th International Symposium on Graph Drawing (GD’99), LNCS 1731, 217–224.Google Scholar
  10. 10.
    P. Mutzel. (2001). Optimization in leveled graphs. In: M. Pardalos, C.A. Floudas (eds.): Encyclopedia of Optimization. Kluwer, Dordrecht.Google Scholar
  11. 11.
    H. Purchase. (1998). Which aesthetic has the greatest effect on human understanding?, in Proc. Symposium on Graph Drawing, GD’97, Lecture Notes in Comput. Sci., 1353, Springer Verlag, Berlin, 248–261.CrossRefGoogle Scholar
  12. 12.
    M. Sarrafzadeh, C.K. Wong. (1996). An Introduction to VLSI Physical Design, McGraw Hill, New York, NY.Google Scholar
  13. 13.
    F. Shahrokhi, O. Sýkora, L.A. Székely, I. Vrťo. (1998). On bipartite crossings, largest biplanar subgraphs, and the linear arrangement problem, in Proc. Workshop on Algorithms and Data Structures, WADS’97, Lecture Notes in Comput. Sci. 1272, Springer-Verlag, Berlin, 55–68.Google Scholar
  14. 14.
    F. Shahrokhi, O. Sýkora, L.A. Székely, I. Vrťo. (2000). A new lower bound for the bipartite crossing number with algorithmic applications, Theoretical Computer Science 245 281–294.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Matthew Newton
    • 1
  • Ondrej Sýkora
    • 1
  • Mark Withall
    • 1
  • Imrich Vrt’o
    • 2
  1. 1.Department of Computer ScienceLoughborough UniversityLoughborough, LeicsUK
  2. 2.Department of Informatics, Institute of MathematicsSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations