Intelligent Support for Solving Classification Differences in Statistical Information Integration

  • Catholijn M. Jonker
  • Tim Verwaart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2718)

Abstract

Integration of heterogeneous statistics is essential for political decision making on all levels. Like in intelligent information integration in general, the problem is to combine information from different autonomous sources, using different ontologies. However, in statistical information integration specific problems arise. This paper is focussed on the problem of differences in classification between sources and goal statistics. Comparison with existing information integration techniques leads to the conclusion that existing techniques can only be used if individual data underlying the statistics is accessible. This requirement is usually not met, due to protection of privacy and commercial interests. In this paper a formal approach and software tools are presented to support statistical information integration, based on a generic ontology for descriptive statistics, and heuristics that work independent of the domain of application. The heuristics were acquired from economic experts working in the field of European Common Fisheries Policy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Economic Performance of Selected European fishing Fleets, Annual report 2000, Concerted Action FAIR PL97-3541, ISBN 90-5242-624-4. LEI, Den Haag, 2000.Google Scholar
  3. 3.
    Arens Y., C.Y. Chee, C-N Hsu, C.A Knoblock: Retrieving and Integrating Data from Multiple Information Sources. International Journal on Intelligent and Cooperative Information Systems, 2, 1993.Google Scholar
  4. 4.
    Goh, C., S. Bressan, S. Madnick, M. Siegel: Context Interchange: New Features and Formalism for the Intelligent Integration of Information. MIT-Sloan Working Paper 3941, 1997.Google Scholar
  5. 5.
    Subrahmanian V.S., S. Adali, A. Brink, R. Emery, J.J. Lu, A. Rajput, T.J. Rogers, R. Ross, C. Ward: HERMES: Heterogeneous Reasoning and Mediator System. http://www.cs.umd.edu/projects/hermes/publications/postscripts/tois.ps, 1996.
  6. 6.
    Nodine, M., J. Fowler, T. Ksiezyk, B Perry, M. Taylor, A. Unruh: Active Information Gathering in InfoSleuth. International Journal on Cooperative Information Systems, 9, 2000.Google Scholar
  7. 7.
    Knoblock, C.A., S. Minton, J.L. Ambite, N. Ashish, I. Muslea, A.G. Philpot, S. Tejada: The Ariadne Approach to Web-based Information Integration. International Journal on Cooperative Information Systems, 10, 2001.Google Scholar
  8. 8.
    Klinkert, M., Treur, J., Verwaart, D.: Knowledge-Intensive Gathering and Integration of Statistical Information on European Fisheries. In: R. Loganantharaj, G. Palm and M. Ali (eds.), Proceedings IEA/AIE 2000. Lecture Notes in AI, vol. 1821, Springer Verlag, 2000.Google Scholar
  9. 9.
    Welvaert, M.: De Belgische zeevisserij — aanvoer en besomming. Ministerie van Landbouw — Bestuur der Economische Diensten — Dienst voor de zeevisserij, Brussels, 1993.Google Scholar
  10. 10.
    Uitkomsten van de Belgische zeevisserij 1993. Ministerie van Landbouw — Bestuur der Economische Diensten — Dienst voor de zeevisserij, Brussels, 1993.Google Scholar
  11. 11.
    Wooldridge, J.M.: Introductory Econometrics. South-Western College Publishing, 2000.Google Scholar
  12. 12.
    Brazier, F.M.T., C.M. Jonker, J. Treur, Principals of Compositional Multi-agent Systems Development. In: J. Cuena (ed.), Proceedings of the 15th IFIP WCC, Conference on Information Technology and Knowledge Systems, IT&KNOWS’98, IOS Press, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Catholijn M. Jonker
    • 1
  • Tim Verwaart
    • 2
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdam
  2. 2.Agricultural Economics Research Institute LEIden Haag

Personalised recommendations