An Optimal Minimum Spanning Tree Algorithm

  • Seth Pettie
  • Vijaya Ramachandran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1853)


We establish that the algorithmic complexity of the minimum spanning tree problem is equal to its decision-tree complexity. Specifically, we present a deterministic algorithm to find a minimum spanning forest of a graph with n vertices and m edges that runs in time O(T(m,n)) where T is the minimum number of edge-weight comparisons needed to determine the solution. The algorithm is quite simple and can be implemented on a pointer machine.

Although our time bound is optimal, the exact function describing it is not known at present. The current best bounds known for T are T(m,n)=Ω(m) and T(m,n)=O(itm·α(m,n)), where α is a certain natural inverse of Ackermann’s function.

Even under the assumption that T is super-linear, we show that if the input graph is selected from G n,m, our algorithm runs in linear time w.h.p., regardless of n, m, or the permutation of edge weights. The analysis uses a new martingale for G n,m similar to the edge-exposure martingale for G n,p.


Graph algorithms minimum spanning tree optimal complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AS92.
    N. Alon, J. Spencer. The Probabilistic Method. Wiley, New York, 1992.zbMATHGoogle Scholar
  2. Bor26.
    O. Borüvka. O jistém problému minimaálním. Moravské Přírodovědecké Společnosti 3, pp. 37–58, 1926. (In Czech).Google Scholar
  3. Chaz97.
    B. Chazelle. A faster deterministic algorithm for minimum spanning trees. In FOCS’ 97, pp. 22–31, 1997.Google Scholar
  4. Chaz98.
    B. Chazelle. Car-pooling as a data structuring device: The soft heap. In ESA’ 98(Venice), pp. 35–42, LNCS 1461, Springer, 1998.Google Scholar
  5. Chaz99.
    B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity. NECI Technical Report 99-099, 1999.Google Scholar
  6. CHL99.
    K. W. Chong, Y. Han and T. W. Lam. On the parallel time complexity of undirected connectivity and minimum spanning trees. In Proc. SODA, pp. 225–234, 1999.Google Scholar
  7. Dij59.
    E. W. Dijkstra. A note on two problems in connexion with graphs. In Numer. Math., 1, pp. 269–271, 1959.zbMATHCrossRefMathSciNetGoogle Scholar
  8. DRT92.
    B. Dixon, M. Rauch, R. E. Tarjan. Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM Jour. Comput., vol 21, pp. 1184–1192, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  9. ER61.
    P. Erdös, A. Rényi On the evolution of random graphs. Bull. Inst. Internat. Statist. 38, pp. 343–347, 1961.zbMATHMathSciNetGoogle Scholar
  10. FT87.
    M. L. Fredman, R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. In JACM 34, pp. 596–615, 1987.CrossRefMathSciNetGoogle Scholar
  11. FW90.
    M. Fredman, D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest paths. In Proc. FOCS’ 90, pp. 719–725, 1990.Google Scholar
  12. GGST86.
    H. N. Gabow, Z. Galil, T. Spencer, R. E. Tarjan. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. In Combinatorica 6, pp. 109–122, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  13. GH85.
    R. L. Graham, P. Hell. On the history of the minimum spanning tree problem. Annals of the History of Computing 7, pp. 43–57, 1985.zbMATHMathSciNetCrossRefGoogle Scholar
  14. Jar30.
    V. Jarník. O jistém problému minimaálním. Moravské Přírodovědecké Společnosti 6, pp. 57–63, 1930. (In Czech).Google Scholar
  15. KKT95.
    D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find minimum spanning trees. JACM, 42:321–328, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  16. KT80.
    R. M. Karp, R. E. Tarjan. Linear expected-time algorithms for connectivity problems. J. Algorithms 1 (1980), no. 4, pp. 374–393.zbMATHCrossRefMathSciNetGoogle Scholar
  17. Lar90.
    L. L. Larmore. An optimal algorithm with unknown time complexity for convex matrix searching. IPL, vol. 36, pp. 147–151, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  18. PR99.
    S. Pettie, V. Ramachandran. A randomized time-work optimal parallel algorithm for finding a minimum spanning forest Proc. RANDOM’ 99, LNCS 1671, Springer, pp. 233–244, 1999.Google Scholar
  19. PR99b.
    S. Pettie, V. Ramachandran. An optimal minimum spanning tree algorithm. Tech Report TR99-17, Univ. of Texas at Austin, 1999.Google Scholar
  20. Pet99.
    S. Pettie. Finding minimum spanning trees in O(mα(m, n)) time. Tech Report TR99-23, Univ. of Texas at Austin, 1999.Google Scholar
  21. Prim57.
    R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 36:1389–1401, 1957.Google Scholar
  22. Tar79.
    R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. In JCSS, 18(2), pp 110–127, 1979.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Seth Pettie
    • 1
  • Vijaya Ramachandran
    • 1
  1. 1.Department of Computer SciencesThe University of Texas at AustinAustin

Personalised recommendations