On Deciding if Deterministic Rabin Language Is in Büchi Class

  • Tomasz Fryderyk Urbański
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1853)


In this paper we give a proof that it is decidable for a deterministic tree automaton on infinite trees with Rabin acceptance condition, if there exists an equivalent nondeterministic automaton with Büchi acceptance condition. In order to prove this we transform an arbitrary deterministic Rabin automaton to a certain canonical form. Using this canonical form we are able to say if there exists a Büchi automaton equivalent to the initial one. Moreover, if it is the case, the canonical form allows us also to find a respective Büchi automaton.


Canonical Form Expressive Power Acceptance Condition Tree Automaton Minimal Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Büchi On a decision method in restricted second order arithmetic, in: Logic, Methodology and Philosophy of Science, Proc. (1960) International Congr. (1962), 1–11.Google Scholar
  2. 2.
    An.A. Muchnik Igry na bieskoniecznych dieriewiach i awtomaty s tupikami. Nowoje dokazatielstwo razrieszimosti monadiczieskoj tieorii dwuch sliedowanij, in: Siemiotika (1985), 16–40.Google Scholar
  3. 3.
    D. Niwiński Fixed point characterization of infinite behavior of finite-state systems, Fundamental Study, Theoretical Computer Science 189 Elsevier (1997), 1–69.Google Scholar
  4. 4.
    D. Niwiński I. Walukiewicz Relating hierarchies of word and tree automata, Proceedings of “15th Annual Symposium on Theoretical Aspects of Computer Science” (STACS), Paris, France (1998), 320–331.Google Scholar
  5. 5.
    M.O. Rabin Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141, (1969), 1–35.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    W. Thomas Automata on infinite objects, in: Handbook of Theoretical Computer Science, Elsevier (1990) 133–191.Google Scholar
  7. 7.
    W. Thomas Languages, automata and logic, Handbook of Formal Languages, Vol. 3, Springer-Verlag (1997).Google Scholar
  8. 8.
    T. Wilke, H. Yoo Computing the Rabin index of a regular language of infinite words, Information and Computation Vol. 130 (1996), 61–70.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Otto, Eliminating Recursion in the mu-Calculus, in: Proceedings of STACS’99, LNCS 1563, Springer 1999, 531–540.Google Scholar
  10. 10.
    T.F. Urbański, On decidability of some properties of finite automata on infinite trees, Master of Sci. Thesis, Warsaw University, 1998 (in Polish), English version

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Tomasz Fryderyk Urbański
    • 1
  1. 1.Institute of Computer ScienceUniversity of WarsawWarsawPoland

Personalised recommendations