Monotone Proofs of the Pigeon Hole Principle

  • Albert Atserias
  • Nicola Galesi
  • Ricard Gavaldá
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1853)

Abstract

We study the complexity of proving the Pigeon Hole Principle (PHP) in a monotone variant of the Gentzen Calculus, also known as Geometric Logic. We show that the standard encoding of the PHP as a monotone sequent admits quasipolynomial-size proofs in this system. This result is a consequence of deriving the basic properties of certain quasipolynomial-size monotone formulas computing the boolean threshold functions. Since it is known that the shortest proofs of the PHP in systems such as Resolution or Bounded Depth Frege are exponentially long, it follows from our result that these systems are exponentially separated from the monotone Gentzen Calculus. We also consider the monotone sequent (CLIQUE) expressing the clique-coclique principle defined by Bonet, Pitassi and Raz (1997). We show that monotone proofs for this sequent can be easily reduced to monotone proofs of the one-to-one and onto PHP, and so CLIQUE also has quasipolynomial-size monotone proofs. As a consequence, Cutting Planes with polynomially bounded coefficients is also exponentially separated from the monotone Gentzen Calculus. Finally, a simple simulation argument implies that these results extend to the Intuitionistic Gentzen Calculus. Our results partially answer some questions left open by P. Pudlák.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14, pp. 417–433, 1994.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Ajtai, J. Komlós, E. Szemer edi. An O(n log n) sorting network. Combinatorica, 3(1), pp. 1–19, 1983.Google Scholar
  3. 3.
    N. Alon, R. B. Boppana. The monotone circuit complexity of boolean functions. Combinatorica, 7, pp. 1–22, 1987.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    P. Beame, R. Impagliazzo, J. KrajÍček, T. Pitassi, P. Pudlák, A. Woods. Exponential lower bounds for the Pigeon Hole Principle. STOC’92, pp. 200–220, 1992.Google Scholar
  5. 5.
    P. Beame, T. Pitassi. Propositional Proof Complexity: Past, Present and Future. Bulletin of the European Association for Theoretical Computer Science, 65, 1998.Google Scholar
  6. 6.
    P. Beame, T. Pitassi. Simplified and Improved Resolution Lower Bound. FOCS’96, pp. 274–282, 1996.Google Scholar
  7. 7.
    M. Bonet, C. Domingo, R. Gavaldá, A. Maciel, T. Pitassi. Non-automatizability of Bounded-Depth Frege Proofs. IEEE Conference on Computational Complexity, 1998.Google Scholar
  8. 8.
    M. Bonet, T. Pitassi, R. Raz. Lower Bounds for Cutting Planes Proofs with small Coefficients. Journal of Symbolic Logic, 62(3), pp. 708–728, 1997. A preliminary version appeared in STOC’95.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. R. Buss. Polynomial size proofs of the propositional pigeon hole principle. Journal of Symbolic Logic, 52(4), pp. 916–927, 1987.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Buss. Some remarks on length of proofs. Archive for Mathematical Logic, 34, pp. 377–394, 1995.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Buss, G. Mints. The complexity of disjunction and existence properties in intuitionistc logic. Preprint, 1998.Google Scholar
  12. 12.
    S. Buss, T. Pitassi. Resolution and the weak Pigeonhole principle. Invited Talk to CSL 97. To appear in Selected Papers of the 11-th CSL, Lecture Notes in Computer Science, 1998.Google Scholar
  13. 13.
    S. R. Buss, G. Turan. Resolution proofs of generalized pigeonhole principles. Theoretical Computer Science, 62(3), pp. 311–317, 1988.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    V. Chvátal E. Szemer edi. Many hard examples for resolution. Journal of the Association for Computer Machinery, 35, pp. 759–768, 1988.Google Scholar
  15. 15.
    P. Clote, A. Setzer. On PHP, st-connectivity and odd charged graphs. Proof Complexity and Feasible Arithmetics, 93–118, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol 39, eds. Paul W. Beame and Samuel R. Buss, 1998.Google Scholar
  16. 16.
    S. Cook, R. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44, pp. 36–50, 1979.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    W. Cook, C. R. Coullard, G. Turán. On the complexity of Cutting Plane proofs. Discrete Applied Mathematics, 18, pp. 25–38, 1987.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. Haken. The intractability of resolution. Theoretical Computer Science, 39(2–3), pp. 297–305, 1985.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    R. Impagliazzo, P. Pudlak, J. Sgall. Lower Bounds for the Polynomial Calculus and the Groebner basis Algorithm. ECCC TR97-042. To appear in Computational Complexity.Google Scholar
  20. 20.
    J. KrajÍček. Speed-up for propositional Frege systems via generalizations of proofs, Commentationes Mathematicae Universiatatis Carolinae, 30, 1989, pp. 137–140.MATHGoogle Scholar
  21. 21.
    J. Krajíček. Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. Journal of Symbolic Logic, 62, pp. 457–486, 1997.CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    A. Maciel, T. Pitassi, and A. R. Woods. A New Proof of the Weak Pigeonhole Principle. To appear in STOC’00.Google Scholar
  23. 23.
    J. B. Paris, A. J. Wilkie, and A. R. Woods. Provability of the pigeonhole principle and the existence of infinitely many primes. Journal of Symbolic Logic, 53(4), pp. 1235–1244, 1988.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    P. Pudlák. On the complexity of the propositional Calculus. Logic Colloquium’ 97. To appear.Google Scholar
  25. 25.
    P. Pudlák. Lower bounds for resolutions and cutting planes proofs and monotone computations. Journal of Symbolic Logic, 62(2), pp., 1997.Google Scholar
  26. 26.
    P. Pudlák, S. Buss. How to lie without being (easily) convicted and the lengths of proofs in propositional calculus. 8th Workshop on CSL, Kazimierz, Poland, September 1994, Springer Verlag LNCS n. 995, pp. 151–162, 1995.Google Scholar
  27. 27.
    A. Razborov. Lower bounds for the monotone complexity of some boolean functions. Soviet Math. Doklady, 31(2), pp. 354–357, 1985.MATHGoogle Scholar
  28. 28.
    A. Razborov. Lower bounds for the Polynomial Calculus. Computational Complexity, 7(4), pp. 291–324, 1998.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    A. A. Razborov, A. Wigderson, A. Yao. Read Once Branching Programs, Rectangular Proofs of the Pigeonhole Principle and the Transversal Calculus. STOC’97, pp. 739–748, 4–6 May 1997.Google Scholar
  30. 30.
    S. Riis. A Complexity Gap for Tree-Resolution. BRICS Report Series, RS-99-29, 1999.Google Scholar
  31. 31.
    G. Takeuti. Proof Theory. North-Holland, second edition, 1987.Google Scholar
  32. 32.
    A. Urquhart. Hard examples for Resolution. Journal of the Association for Computing Machinery, 34(1), pp. 209–219, 1987.MATHMathSciNetGoogle Scholar
  33. 33.
    L. Valiant. Short monotone formulae for the majority function. Journal of Algorithms, 5, pp. 363–366, 1984.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.Google Scholar
  35. 35.
    I. Wegener. The Complexity of Boolean Functions. J. Wiley and Sons, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Albert Atserias
    • 1
  • Nicola Galesi
    • 1
  • Ricard Gavaldá
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformáticsUniversitat Politécnica de CatalunyaBarcelonaSpain

Personalised recommendations