Virtual Living Beings

  • Michel Bret
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1834)


The body of 3D synthesis has long been described as an «object». Scientists and artists alike are today reconsidering the subject of life and reality through virtual simulations. We must move beyond the real-virtual duality (which encompasses the body-mind duality) towards a redefinition of both terms: That which is real must henceforth integrate a virtual component (since we perceive that which is virtual) and that which is virtual is unable to exist outside the sphere of reality, since it is expressed through physical machines.The living body is a pluridisciplinary subject, being influenced both on the scientific side by medicine and biology and from the sphere of arts by philosophy and its ties to the mind. Thus, it can not be dealt with adequately by a unilateral approach. Various analyses of this problem will show that an analytical method alone is insufficient and that approaches which call upon the concept of emergence are necessary.


Computer Graphic Artificial Life Living Body Artificial Fish Virtual Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hervé Abdi: Les réseaux de neurones. Presses Universitaires de Grenoble, France (1994)Google Scholar
  2. 2.
    Alain Berthoz: Le sens du mouvement. Éditions Odile Jacob Sciences, France (1997)Google Scholar
  3. 3.
    Bruce M. Blumberg, Tinsley A. Galyean: Multi-Level Direction of Autonomous Creatures for Real-Time Virtual Environments. in Computer Graphics, USA (1995) 47–54Google Scholar
  4. 4.
    Ramachandran Bharath, James Drosen: Neural Network Computing. Windcrest/McGraw-Hill (1994)Google Scholar
  5. 5.
    P. Bourret, J. Reggia, M. Samuelides: Réseaux Neuronaux. Tekena, France (1991)Google Scholar
  6. 6.
    David T. Chen, David Zeltzer: Pump It Up: Computer Animation of Biomechanically Based Model of Muscle. in Computer Graphics Vol. 26(4), USA (1992) 89–98CrossRefGoogle Scholar
  7. 7.
    Armin Bruderlin, Thomas W. Calvert: Goal-Directed, Dynamic Animation of Human Walking. in Computer Graphice Vol. 23(3), USA (1989) 232–242Google Scholar
  8. 8.
    John E. Chadwick, David R. Haumann, Richard E. Parent: Layered Construction for Deformable Animated Characters. in Computer Graphics Vol. 23(3), USA (1989) 243–252CrossRefGoogle Scholar
  9. 9.
    Jean-Louis Dessalles: L’ordinateur génétique. Hermes, France (1996)Google Scholar
  10. 10.
    David E. Goldberg: Algorithmes Génétiques. Addison-Wesley (1991)Google Scholar
  11. 11.
    Francis Goubel, Ghislaine Lensel-Corbeil: Biomécanique, éléments de mécanique musculaire. Masson France (1998)Google Scholar
  12. 12.
    Radek Grzeszczuk, Demetri Terzopoulos: Automated Learning of Muscle-Actuated Locomotion Through Control Abstraction. in Computer Graphics, USA (1995) 63–70Google Scholar
  13. 13.
    Jean-Claude Heudin: La Vie Artificielle. Hermes France (1994)Google Scholar
  14. 14.
    Victor Ng Thow Hing: A Biomechanical Musculotendon Model For Animating Articulated Objects. Thesis, Departement of Computer Science University of Toronto Canada, (1994)Google Scholar
  15. 15.
    Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, James F. O’BrienR: Animating Human Athletics. in Computer Graphics, USA (1995) 71–78Google Scholar
  16. 16.
    Jessica K. Hodgins, Nancy S. Pollard: Adaptating Simulated Behaviors For New Characters. in Computer Graphics, USA (1997) 153–162Google Scholar
  17. 17.
    John Holland: Adaptation in natural and artificial systems. Ann Arbor; The University of Michigan Press, USA (1975)Google Scholar
  18. 18.
    J.R. Koza: Genetic evolution and co-evolution of computer programs. in C.G. Langton (Ed.), Artificial Life II, Addison-Wesley, (1991) 603–629Google Scholar
  19. 19.
    Michael McKenna, David Zeltzer: Dynamic Simulation of Autonomous Legged Locomotion. in Computer Graphics Vol. 24(4), (1990) 29–38CrossRefGoogle Scholar
  20. 20.
    Gavin S.P. Miller: The Motion Dynamics of Snakes and Worms. in Computer Graphics Vol. 22(4), USA (1988) 168–178CrossRefGoogle Scholar
  21. 21.
    Arrnould Moreaux: Anatomie Artistique de l’Homme. Maloine, France (1959)Google Scholar
  22. 22.
    Marc H. Raibert, Jessica K. Hodgins: Animation of Dynamic Legged Locomotion. in Computer Graphics Vol. 25(4), USA (1991) 349–358CrossRefGoogle Scholar
  23. 23.
    Thomas S. Ray: Evolution, complexity, entropy, and artificial reality. in Physica, (1994) 239–263Google Scholar
  24. 24.
    Craig W. Reynolds: Computer Animation with Scripts and Actors. in Computer Graphics Vol. 16(3), USA (1982) 289–296CrossRefMathSciNetGoogle Scholar
  25. 25.
    Craig W. Reynolds: Flocks, herds, and schools: A distributed behavioral model. in Computer Graphics Vol. 21(4), USA (1987) 25–34CrossRefMathSciNetGoogle Scholar
  26. 26.
    Paul Richer: Taité d’Anatomie Artistique. Bibliothèque de l’Image, France (1996)Google Scholar
  27. 27.
    Olivier Sarzeaud: Les réseaux de neurones, contribution à une théorie. Ouset Editions, France (1994)Google Scholar
  28. 28.
    Ferdi Scheepers, Richard E. Parent, Wayne E. Carlsom, Stephen F. May: Anatomy-Based Modeling of the Human Musculature. in Computer Graphics, USA (1997) 163–172Google Scholar
  29. 29.
    Karl Sims: Artificial Evolution for Computer Graphics. in Computer Graphics Vol. 25(4), USA (1991) 319–328CrossRefMathSciNetGoogle Scholar
  30. 30.
    Karl Sims: Evolving Virtual Creatures. in Computer Graphics, USA (1994) 15–22Google Scholar
  31. 31.
    Karl Sims: Evolving 3D Morphology and Behavior by Competition. in Artificial Life IVProceedings, MIT Press, USA (1994) 28–39Google Scholar
  32. 32.
    András Szunyoghy, György Fehé: Grand Cours d’Anatomie Artistique. Konemann France (1996)Google Scholar
  33. 33.
    Xiaoyuan Tu, Demetri Terzopoulos: Artificial Fishes: Physics, Locomotion, Perception, Behavior. in Computer Graphics, USA (1994) 43–50Google Scholar
  34. 34.
    Demetri Terzopoulos, John Platt, Alan Barr, Kurt Fleischer: Elastically Deformable Models. Computer Graphics Vol. 21(4), USA (1987) 205–214CrossRefGoogle Scholar
  35. 35.
    Michiel Van de Panne, Eugène Fiume: Sensor-Actuator Networks. in Computer Graphics, USA (1993) 335–342Google Scholar
  36. 36.
    Michiel Van de Panne: Control Techniques for Physically-Based Animation. These, Université de Toronto Canada (1994)Google Scholar
  37. 37.
    Jane Wilhelms, Allen Van Gelder: Anatomically Based Modeling. in Computer Graphics, USA (1997) 181–188Google Scholar
  38. 38.
    Keith Waters: A Muscle Model for Animating Three-Dimensionam Facial Expression. Computer Graphics Vol. 21(4), USA (1987) 17–24CrossRefMathSciNetGoogle Scholar
  39. 39.
    David Zeltzer: Motor Control Techniques for Figure Animation. in IEEE Computer Graphics and Applications Vol. 2,9, USA (1982) 53–59CrossRefGoogle Scholar
  40. 40.
    F.E. Zajac, E. L. Topp, P. J. Stevenson: A Dimensionless Musculotendon Model. in Proceedings IEEE Engineering in Medecine and Biology (1986)Google Scholar
  41. 41.
    F.E. Zajac: Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control. in Critical Reviews in Biomedical Engineering, Vol. 17, (1989) 359–411Google Scholar
  42. 42.
    Yuencheng Lee, Demetri Terzopoulos, Keith Waters: Ralistic Modeling for Facial Animation. In Computer Graphics USA (1995) 55–6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Michel Bret
    • 1
  1. 1.Université PARIS 8Saint DenisFrance

Personalised recommendations