A hybrid projection based and radial basis function architecture

  • Shimon Cohen
  • Nathan Intrator
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1857)


A hybrid architecture that includes Radial Basis Functions (RBF) and projection based hidden units is introduced together with a simple gradient based training algorithm. Classification and regression results are demonstrated on various data sets and compared with several variants of RBF networks. In particular, best classification results are achieved on the vowel classification data [1].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Deterding. Speaker Normalisation for Automatic Speech Recognition. PhD thesis, University of Cambridge, 1989.Google Scholar
  2. 2.
    D. L. Donoho and I. M. Johnstone. Projection-based approximation and a duality with kernel methods. Annals of Statistics, 17:58–106, 1989.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley, New York, 1973.MATHGoogle Scholar
  4. 4.
    G. W. Flake. Square unit augmented, radially extended, multilayer percpetrons. In G. B. Orr and K. Müller, editors, Neural Networks: Tricks of the Trade, pages 145–163. Springer, 1998.Google Scholar
  5. 5.
    J. H. Friedman. Mutltivariate adaptive regression splines. The Annals of Statistics, 19:1–141, 1991.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Hastie and R. Tibshirani. Generalized additive models. Statistical Science, 1:297–318, 1986.MathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman and Hall, London, 1990.MATHGoogle Scholar
  8. 8.
    S. Lane, D. Handelman, J. Gelfand, and M. Flax. Function approximation using multi-layered neural networks and b-spline receptive fields. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems, volume 3, pages 684–693, San Mateo, CA, 1991. Morgan Kaufmann.Google Scholar
  9. 9.
    Y. C. Lee, G. Doolen, H. H. Chen, G. Z.Sun, T. Maxwell, H.Y. Lee, and C. L. Giles. Machine learning using higher order correlation networks. Physica D, 22:276–306, 1986.MathSciNetGoogle Scholar
  10. 10.
    D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.CrossRefGoogle Scholar
  11. 11.
    M. J. Orr. Introduction to Radial Basis Function networks. Technical report, 1996. http://www.anc.ed.ac.uk/~mjo/rbf.html.
  12. 12.
    M. J. Orr. Recent advances in Radial Basis Function networks. Technical report http://www.anc.ed.ac.uk/~mjo/papers/recad.ps.gz 1999.
  13. 13.
    M. J. Orr, J. Hallman, K. Takezawa, A. Murray, S. Ninomiya, M. Oide, and T. Leonard. Combining regression trees and radial basis functions. Division of informatics, Edinburgh University, 1999. Submitted to IJNS.Google Scholar
  14. 14.
    Gorman R. P. and Sejnowski T. J. Analysis of hidden units in a layered network trained to classify sonar targets. Neural Network, pages 75–89, 1988. Vol. 1.CrossRefGoogle Scholar
  15. 15.
    A. J. Robinson. Dynamic Error Propogation Networks. PhD thesis, University of Cambridge, 1989.Google Scholar
  16. 16.
    D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, pages 318–362. MIT Press, Cambridge, MA, 1986.Google Scholar
  17. 17.
    M. Schetzen. The Volterra and Wiener Theories Of Nonlinear Systems. John Wiley and Sons, New York, 1980.MATHGoogle Scholar
  18. 18.
    C. J. Stone. The dimensionality reduction principle for generalized additive models. The Annals of Statistics, 14:590–606, 1986.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    V. Volterra. Theory of Functional and of Integro-differential Equations. Dover, 1959.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Shimon Cohen
    • 1
  • Nathan Intrator
    • 1
  1. 1.Computer Science DepartmentTel-Aviv UniversityIsrael

Personalised recommendations