Two Variables per Linear Inequality as an Abstract Domain

  • Axel Simon
  • Andy King
  • Jacob M. Howe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2664)

Abstract

This paper explores the spatial domain of sets of inequalities where each inequality contains at most two variables — a domain that is richer than intervals and more tractable than general polyhedra. We present a complete suite of efficient domain operations for linear systems with two variables per inequality with unrestricted coefficients. We exploit a tactic in which a system of inequalities with at most two variables per inequality is decomposed into a series of projections — one for each two dimensional plane. The decomposition enables all domain operations required for abstract interpretation to be expressed in terms of the two dimensional case. The resulting operations are efficient and include a novel planar convex hull algorithm. Empirical evidence suggests that widening can be applied effectively, ensuring tractability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bagnara. Data-Flow Analysis for Constrant Logic-Based Languages. PhD thesis, Dipartimento di Informatica, Università di Pisa, 1997.Google Scholar
  2. 2.
    V. Balasundaram and K. Kennedy. A Technique for Summarizing Data Access and its Use in Parallelism Enhancing Transformations. In Programming Language Design and Implementation, pages 41–53. ACM Press, 1989.Google Scholar
  3. 3.
    F. Bancilhon and R. Ramakrishnan. An Amateur’s Introduction to Recursive Query Processing Strategies. In International Conference on Management of Data, pages 16–52. ACM Press, 1986.Google Scholar
  4. 4.
    F. Benoy and A. King. Inferring Argument Size Relationships with CLP(ℝ). In Logic Program Synthesis and Transformation (Selected Papers), volume 1207 of Lecture Notes in Computer Science, pages 204–223. Springer-Verlag, 1997.Google Scholar
  5. 5.
    J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the Average Number of Maxima in a Set of Vectors. Journal of the ACM, 25:536–543, 1978.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    N. V. Chernikova. Algorithm for Discovering the Set of All Solutions of a Linear Programming Problem. USSR Computational Mathematics and Mathematical Physics, 8(6):282–293, 1968.MATHCrossRefGoogle Scholar
  7. 7.
    P. Cousot and R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. In Programming Language Implementation and Logic Programming, volume 631 of Lecture Notes in Computer Science, pages 269–295. Springer-Verlag, 1992.CrossRefGoogle Scholar
  8. 8.
    P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among Variables of a Program. In Principles of Programming Languages, pages 84–97. ACM Press, 1978.Google Scholar
  9. 9.
    E. Davis. Constraint Propagation with Interval Labels. Artificial Intelligence, 32(3):281–331, 1987.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    S. D. Feit. A Fast Algorithm for the Two-Variable Integer Programming Problem. Journal of the ACM, 31(1):99–113, 1984.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. L. Graham. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set. Information Processing Letters, 1(4):132–133, 1972.MATHCrossRefGoogle Scholar
  12. 12.
    P. Granger. Static Analysis of Linear Congruence Equalities among Variables of a Program. In International Joint Conference on the Theory and Practice of Software Development, volume 493 of Lecture Notes in Computer Science, pages 169–192. Springer-Verlag, 1991.Google Scholar
  13. 13.
    W. H. Harrison. Compiler Analysis of the Value Ranges for Variables. IEEE Transactions on Software Engineering, SE-3(3), 1977.Google Scholar
  14. 14.
    W. Harvey. Computing Two-Dimensional Integer Hulls. SIAM Journal on Computing, 28(6):2285–2299, 1999.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    W. Harvey and P. J. Stuckey. A Unit Two Variable per Inequality Integer Constraint Solver for Constraint Logic Programming. Australian Computer Science Communications, 19(1):102–111, 1997.Google Scholar
  16. 16.
    D. S. Hochbaum and J. Naor. Simple and Fast Algorithms for Linear and Integer Programs with Two Variables per Inequality. SIAM Journal on Computing, 23(6):1179–1192, 1994.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    J. M. Howe and A. King. Specialising Finite Domain Programs using Polyhedra. In Logic Programming, Synthesis and Transformation (Selected Papers), volume 1817 of Lecture Notes in Computer Science, pages 118–135. Springer-Verlag, 1999.CrossRefGoogle Scholar
  18. 18.
    J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Beyond Finite Domains. In International Workshop on Principles and Practice of Constraint Programming, volume 874 of Lecture Notes in Computer Science, pages 86–94. Springer-Verlag, 1994.Google Scholar
  19. 19.
    M. Karr. Affine Relationships Among Variables of a Program. Acta Informatica, 6:133–151, 1976.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    V. Klee and G. J. Minty. How Good is the Simplex Algorithm? In Inequalities-III. Academic Press, New York and London, 1972.Google Scholar
  21. 21.
    J. C. Lagarias. The Computational Complexity of Simultaneous Diophantine Approximation Problems. SIAM Journal on Computing, 14(1):196–209, 1985.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Clock Difference Diagrams. Nordic Journal of Computing, 6(3):271–298, 1999.MATHMathSciNetGoogle Scholar
  23. 23.
    H. Le Verge. A Note on Chernikova’s Algorithm. Technical Report 1662, Institut de Recherche en Informatique, Campus Universitaire de Beaulieu, France, 1992.Google Scholar
  24. 24.
    N. Lindenstrauss and Y. Sagiv. Automatic Termination Analysis of Logic Programs. In International Conference on Logic Programming, pages 63–77. MIT Press, 1997.Google Scholar
  25. 25.
    A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In Programs as Data Objects, volume 2053 of Lecture Notes in Computer Science, pages 155–172. Springer, 2001.CrossRefGoogle Scholar
  26. 26.
    A. Miné. The Octagon Abstract Domain. In Eighth Working Conference on Reverse Engineering, pages 310–319. IEEE Computer Society, 2001.Google Scholar
  27. 27.
    A. Miné. A Few Graph-Based Relational Numerical Abstract Domains. In Ninth International Static Analysis Symposium, volume 2477 of Lecture Notes in Computer Science, pages 117–132. Springer-Verlag, 2002.Google Scholar
  28. 28.
    J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference Decision Diagrams. In Conference of the European Association for Computer Science Logic, volume 1683 of Lecture Notes in Computer Science, pages 111–125. Springer-Verlag, 1999.Google Scholar
  29. 29.
    C. G. Nelson. An n log(n) Algorithm for the Two-Variable-Per-Constraint Linear Programming Satisfiability Problem. Technical Report STAN-CS-78-689, Stanford University, Department of Computer Science, 1978.Google Scholar
  30. 30.
    V. R. Pratt. Two Easy Theories Whose Combination is Hard, September 1977. http://boole.stanford.edu/pub/sefnp.pdf.
  31. 31.
    H. Raynaud. Sur L’enveloppe Convexe des Nuages de Points Aléatoires dans ℝn. Journal of Applied Probability, 7(1):35–48, 1970.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    R. Seidel. Convex Hull Computations. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, pages 361–376. CRC Press, 1997.Google Scholar
  33. 33.
    R. Shaham, H. Kolodner, and M. Sagiv. Automatic Removal of Array Memory Leaks in Java. In Compiler Construction, volume 1781 of Lecture Notes in Computer Science, pages 50–66. Springer, 2000.CrossRefGoogle Scholar
  34. 34.
    R. Shostak. Deciding Linear Inequalities by Computing Loop Residues. Journal of the ACM, 28(4): 769–779, 1981.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Z. Su and D. Wagner. Efficient Algorithms for General Classes of Integer Range Constraints, July 2001. http://www.cs.berkeley.edu/~zhendong/.
  36. 36.
    D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A First Step Towards Detection of Buffer Overrun Vulnerabilities. In Network and Distributed System Security Symposium. Internet Society, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Axel Simon
    • 1
  • Andy King
    • 1
  • Jacob M. Howe
    • 2
  1. 1.Computing LaboratoryUniversity of KentCanterburyUK
  2. 2.Department of ComputingCity UniversityLondonUK

Personalised recommendations