Synchronizing Monotonic Automata

  • Dimitry S. Ananichev
  • Mikhail V. Volkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2710)

Abstract

We show that if the state set Q of a synchronizing automaton \( \mathcal{A} = \left\langle {Q,\sum ,\delta } \right\rangle \) admits a linear order such that for each letter aΣ the transformation δ(_, a) of Q preserves this order, then \( \mathcal{A} \) possesses a reset word of length |Q| − 1. We also consider two natural generalizations of the notion of a reset word and provide for them results of a similar flavour.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Černý, J.: Poznámka k homogénnym eksperimentom s konecnými avtomatami. Mat.-Fyz. Cas. Slovensk. Akad. Vied. 14 (1964) 208–216 [in Slovak].MATHGoogle Scholar
  2. 2.
    Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Inform. Theor. Appl. 32 (1998) 21–34 [in French].MathSciNetGoogle Scholar
  3. 3.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19 (1990) 500–510.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kari, J.: A counter example to a conjecture concerning synchronizing words in finite automata. EATCS Bull. 73 (2001) 146.MATHMathSciNetGoogle Scholar
  5. 5.
    Kari, J.: Synchronizing finite automata on Eulerian digraphs. Math. Foundations Comput. Sci.; 26th Internat. Symp., Marianske Lazne, 2001. Lect. Notes Comput. Sci. 2136 (2001) 432–438.MathSciNetGoogle Scholar
  6. 6.
    Mateescu, A., Salomaa, A.: Many-valued truth functions, Černý’s conjecture and road coloring. EATCS Bull. 68 (1999) 134–150.MATHMathSciNetGoogle Scholar
  7. 7.
    Pin, J.-E.: Le Problème de la Synchronisation. Contribution à l’Étude de la Conjecture de Černý. Thèse de 3éme cycle. Paris, 1978 [in French].Google Scholar
  8. 8.
    Pin, J.-E.: Sur les mots synchronisants dans un automate fini. Elektronische Informationverarbeitung und Kybernetik 14 (1978) 283–289 [in French].MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Dimitry S. Ananichev
    • 1
  • Mikhail V. Volkov
    • 1
  1. 1.Department of Mathematics and MechanicsUral State UniversityEkaterinburgRussia

Personalised recommendations