Advertisement

A Geometric Agent Following Route Instructions

  • Ladina B. Tschander
  • Hedda R. Schmidtke
  • Carola Eschenbach
  • Christopher Habel
  • Lars Kulik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2685)

Abstract

We present the model of a Geometric Agent that can navigate on routes in a virtual planar environment according to natural-language instructions presented in advance. The Geometric Agent provides a new method to study the interaction between the spatial information given in route instructions and the spatial information gained from perception. Perception and action of the Geometric Agent are simulated. Therefore, the influence of differences in both linguistic and perceptual skills can be subject to further studies employing the Geometric Agent. The goal of this investigation is to build a formal framework that can demonstrate the performance of specific theories of the interpretation of natural-language in the presence of sensing. In this article, we describe the main sub-tasks of instructed navigation and the internal representations the Geometric Agent builds up in order to carry them out.

Keywords

Spatial Relation Internal Model Decision Point Spatial Cognition Lexical Entry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agre, P. E. & Chapman, D. (1990). What are plans for? Robotics and Autonomous Systems, 6. 17–34.CrossRefGoogle Scholar
  2. Allen, G. L. (1997). From knowledge to words to wayfinding: Issues in the production and comprehension of route directions. In S.C. Hirtle & A.U. Frank (eds.), Spatial Information Theory (pp. 363–372). Berlin: Springer.CrossRefGoogle Scholar
  3. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22. 577–660.CrossRefGoogle Scholar
  4. Crangle, C. & P. Suppes (1994). Language and Learning for Robots. Stanford: CSLI.Google Scholar
  5. Denis, M. (1997). The description of routes: A cognitive approach to the production of spatial discourse. Cahiers de Psychologie Cognitive 16. 409–458.Google Scholar
  6. Eschenbach, C. (1999). Geometric structures of frames of reference and natural language semantics. Spatial Cognition and Computation 1. 329–348.CrossRefGoogle Scholar
  7. Eschenbach, C. & L. Kulik (1997). An axiomatic approach to the spatial relations underlying ‘left’-‘right’ and ‘in front of’-;‘behind’. In G. Brewka, C. Habel & B. Nebel (eds.), KI-97: Advances in Artificial Intelligence (pp. 207–218). Berlin: Springer-Verlag.Google Scholar
  8. Eschenbach, C., L. Tschander, C. Habel & L. Kulik (2000). Lexical specifications of paths. In C. Freksa, W. Brauer, C. Habel & K.F. Wender (eds.), Spatial Cognition II (pp. 127–144). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  9. Fontaine, S. & M. Denis (1999). The production of route instructions in underground and urban environments. In C. Freksa & D.M. Mark (eds.), Spatial Information Theory (pp. 83–94). Berlin: Springer.Google Scholar
  10. Fraczak, L. (1998). Generating ‘mental maps’ from route descriptions. In P. Olivier & K.-P. Gapp (eds.), Representation and Processing of Spatial Expressions (pp. 185–200). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  11. Frank, A. (2000). Spatial communication with maps: Defining the correctness of maps using a multi-agent simulation. In C. Freksa, W. Brauer, C. Habel & K.F. Wender (eds.), Spatial Cognition II (pp. 80–99). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  12. Habel, C. (1987). Cognitive linguistics: The processing of spatial concepts. T. A. Informations (Bulletin semestriel de l’ATALA, Association pour le traitement automatique du langage) 28. 21–56.Google Scholar
  13. Habel, C., S. Pribbenow & G. Simmons (1995). Partonomies and depictions: A hybrid approach. In J. Glasgow, H. Narayanan & B. Chandrasekaran (eds.): Diagrammatic Reasoning: Cognitive and Computational Perspectives (pp. 627–653). Cambridge, MA: MIT-Press.Google Scholar
  14. Jackendoff, R. (1990). Semantic Structures. Cambridge: MIT-Press.Google Scholar
  15. Kaufmann, I. (1995). Konzeptuelle Grundlagen semantischer Dekompositionsstrukturen. Tübingen: Niemeyer.Google Scholar
  16. Klein, W. (1979). Wegauskünfte. Zeitschrift für Literaturwissenschaft und Linguistik 33. 9–57.Google Scholar
  17. Klein, W. (1982). Local deixis in route directions. In R.J. Jarvella & W. Klein (eds.), Speech, Place, and Action (pp. 161–182). Chichester: Wiley.Google Scholar
  18. Labrou, Y., Finin, T. & Peng, Y. (1999). Agent communication languages: The current landscape. IEEE Intelligent Systems, 14. 45–52.CrossRefGoogle Scholar
  19. Levinson, S. (1996). Frames of reference and Molyneux’s question: crosslinguistic evidence. In P. Bloom, M. A. Peterson, L. Nadel & M. F. Garrett (eds.), Language and Space (pp. 109–169). Cambridge MA: MIT Press.Google Scholar
  20. Ligozat, G. (2000). From language to motion, and back: Generating and using route descriptions. In D.N. Chistodoulakis (ed.) NLP 2000, LNCS 1835. pp. 328–345.Google Scholar
  21. Lovelace, K. L., M. Hegarty & D. R. Montello (1999). Elements of good route directions in familiar and unfamiliar environments. In C. Freksa & D.M. Mark (eds.), Spatial Information Theory. (pp. 65–82). Berlin: Springer.Google Scholar
  22. Mallot, H. A. (1999). Spatial cognition: Behavioral competences, neural mechanisms, and evolutionary scaling. Kognitionswissenschaft 8. 40–48.CrossRefGoogle Scholar
  23. Mann, G. (1996). Control of a Navigating Rational Agent by Natural Language. PhD Thesis. School of Computer Science and Engineering,University of New South Wales, Sydney.Google Scholar
  24. Schmidtke, H. R. (2001). The house is north of the river: Relative localization of extended objects. In D. R. Montello (ed.), Spatial Information Theory (pp. 414–430). Berlin: Springer.Google Scholar
  25. Schmidtke, H. R., L. Tschander, C. Eschenbach & C. Habel, (to appear). Change of orientation. In J. Slack & E. van der Zee (eds.), Representing Direction in Language and Space. Oxford: Oxford University Press.Google Scholar
  26. Trullier, O., S. I. Wiener, A. Berthoz & J.-A. Meyer (1997). Biologically based artificial navigation systems: Review and prospects. Progress in Neurobiology, 51. 483–544.CrossRefGoogle Scholar
  27. Tversky, B. & P. U. Lee (1999). On pictorial and verbal tools for conveying routes. In C. Freksa & D.M. Mark (eds.), Spatial Information Theory. (pp. 51–64). Berlin: Springer.Google Scholar
  28. Vere, S. & Bickmore, T. (1990) A basic agent. Computational Intelligence, 6, 41–61.CrossRefGoogle Scholar
  29. Werner, S., B. Krieg-Brückner & T. Herrmann (2000). Modelling navigational knowledge by route graphs. In C. Freksa, W. Brauer, C. Habel & K.F. Wender (eds.), Spatial Cognition II (pp. 295–316). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  30. Wunderlich, D. & R. Reinelt (1982). How to get there from here. In R.J. Jarvella & W. Klein (eds), Speech, Place, and Action (pp. 183–201). Chichester: Wiley.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ladina B. Tschander
    • 1
  • Hedda R. Schmidtke
    • 1
  • Carola Eschenbach
    • 1
  • Christopher Habel
    • 1
  • Lars Kulik
    • 1
  1. 1.Department for InformaticsUniversity of HamburgHamburgGermany

Personalised recommendations