DNA implementation of a Royal Road fitness evaluation

  • Elizabeth Goode
  • David Harlan Wood
  • Junghuei Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2054)

Abstract

A model for DNA implementation of Royal Road evolutionary computations is presented. An encoding for a Royal Road problem is presented. Experimental results utilizing 2-d denaturing gradient gel electrophoresis (2-d DGGE) and polyacrylamide gel electrophoresis (PAGE) for separation by fitness in this sample Royal Road problem are shown. Suggestions for possible use of the MutS and MutY proteins as tools for separation by fitness are given. Plans for future experiments and implementation are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leonard M. Adleman, Computing with DNA, Scientific American 279 (1998), 54–61.CrossRefGoogle Scholar
  2. 2.
    Leonard M. Adleman, Molecular computation of solutions to combinatorial problems, Science 266 (1994), 1021–1024.CrossRefGoogle Scholar
  3. 3.
    K. G. Au, S. Clark, J. H. Miller and P. Modrich, Escherichia coli MutY gene encodes an adenine glycosylase active on G-A mispairs, PNAS 86 (1989), 8877–8881.CrossRefGoogle Scholar
  4. 4.
    Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, eds., Handbook of Evolutionary Algorithms, Institute of Physics Publishing, Philadelphia, 1997.Google Scholar
  5. 5.
    Dan Boneh, Christopher Dunworth, and Richard J. Lipton, Breaking DES using a molecular computer, Tech. Report CS-TR-489-95, Princeton University, May 1995.Google Scholar
  6. 6.
    Alan Dove, From bits to bases: Computing with DNA, Nature Biotechnology 16, no. 9, (1998), 830–832.CrossRefGoogle Scholar
  7. 7.
    I. Biswas and P. Hseih, Identification and Characterization of a Thermostable MutS Homolog from Thermus aquaticus, The Journal of Biological Chemistry 271, (1996), no. 9, 5040–5048.CrossRefGoogle Scholar
  8. 8.
    J. Chen, E. Antipov, B. Lemieux, W. Cedeno, and D.H. Wood, DNA Computing implementing genetic algorithms, Preliminary Proceedings DIMACS Workshop on Evolution as Computation, (L. Landweber, R. Lipton, E. Winfree and S. Freeman, eds), DIMACS, Piscataway, NJ, 1999, 39–49.Google Scholar
  9. 9.
    David Harlan Wood, Junghuei Chen, Eugene Antipov, Bertrand Lemieux, and Walter Cedeño, In vitro selection for a OneMax DNA evolutionary computation, DNA Based Computers V: DIMACS Workshop, DIMACS series in discrete mathematics and theoretical computer science, June 14–15, 1999, (David Gifford and Erik Winfree, eds.), American Mathematical Society, Providence, to appear.Google Scholar
  10. 10.
    A. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, Current Protocals in Molecular Biology, Greene Publishing Associates and Wiley-Interscience, 1994.Google Scholar
  11. 11.
    J. C. Cox, P. Rudolph, and A. D. Ellington, Automated RNA selection, Biotechnology Progress 14 (1998), no. 6, 845–850.CrossRefGoogle Scholar
  12. 12.
    S. Fischer and L. Lerman, Proceedings of the National Academy of Science 80 (1983), 1579–1583.CrossRefGoogle Scholar
  13. 13.
    Philippe Gigure and David E. Goldberg, Population sizing for optimum sampling with genetic algorithms: A case study of the Onemax problem, Genetic Programming 1998: Proceedings of the Third Annual Conference at Madison, WI, (John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, eds), Morgan Kaufman, San Francisco, 1998, 22–25.Google Scholar
  14. 14.
    Searching for gene defects by denaturing gradient gel electrophoresis, Trends in Biochemical Sciences 172 (1992), no. 3, 89–93.Google Scholar
  15. 15.
    Jörg Heitkötter and David Beasley, The hitch-hiker’s guide to evolutionary computation, (FAQ for comp.ai.genetic). Web page at http://alife.santafe.edu/joke/encore/www/, September 1999.
  16. 16.
    A. A. Beaudry and Gerald E. Joyce, Directed evolution of an RNA enzyme, Science 257 (1992), 635–641.CrossRefGoogle Scholar
  17. 17.
    Lila Kari, DNA computing: Arrival of biological mathematics, Math. Intelligencer 19 (1997), no. 2, 9–22.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Xianghong Li, Patrick M. Wright and A-Lien Lu, The C-terminal Domain of MutY Glycosylase Determines the 7,8-Dihydro-8-oxo-guanine Specificity and Is Crucial for Mutation Avoidance, The Journal of Biological Chemistry 275 (2000), no. 12, 8448–8455CrossRefGoogle Scholar
  19. 19.
    Richard J. Lipton, DNA solution of hard computational problems, Science 268 (1995), 542–545.CrossRefGoogle Scholar
  20. 20.
    J. R. Lorsch and J. W. Szostak, In vitro evolution of new ribozymes with polynucleotide kinase activity, Nature 371 (1993),31–36.CrossRefGoogle Scholar
  21. 21.
    A Novel Nucleotide Excision Repair for the Conversion of an A/G Mismatch to C/G Base Pair in E. coli, Cell 54 (1988), 805–812.Google Scholar
  22. 22.
    A-Lien Lu and Ih-Chang Hsu, Detection of Single DNA Base Mutations with Mismatch Repair Enzymes, Genomics 14 (1992), 249–255.CrossRefGoogle Scholar
  23. 23.
    Melanie Mitchell, Stephanie Forrest, and John Holland, The royal road for genetic algorithms: Fitness landscapes and GA performance, Proceedings of the First European Conference on Artificial Life, MIT Press/Bradford Books, Cambridge, MA, 1992.Google Scholar
  24. 24.
    Melanie Mitchell, An Introduction to Genetic Algorithms,MIT Press, Cambridge, MA,1998.MATHGoogle Scholar
  25. 25.
    Paul Modrich, Mechanisms and Biological Effects of Mismatch Repair, Annu. Rev. Genet. 25 (1991), 229–253.CrossRefGoogle Scholar
  26. 26.
    H. Muir, DNA reveals its talent for computing, New Scientist 144 (1994).Google Scholar
  27. 27.
    Robert Pool, Forget silicon, try DNA, New Scientist 151 (1996) no. 2038, 26–31.Google Scholar
  28. 28.
    Erik van Nimwegen, James P. Crutchfield and Melanie Mitchell, Statistical Dynamics of the Royal Road Genetic Algorithm, Theoretical Computer Science, special issue on Evolutionary Computation, to appear (1998).Google Scholar
  29. 29.
    James P. Crutchfield and Erik van Nimwegen, Optimizing epochal evolutionary search: Population-size independent theory, SFI Working Paper 98-06-046, 1998, 18 pages. Paper found at URL: http://www.santafe.edu/projects/evca/evabstracts.html#oeespsit.
  30. 30.
    James P. Crutchfield and Erik van Nimwegen, Optimizing epochal evolutionary search: Population-size dependent theory, SFI Working Paper 98-10-090, 1998, 18 pages. Paper found at URL: http://www.santafe.edu/projects/evca/evabstracts.html#oeespsdt.
  31. 31.
    James P. Crutchfield and Erik van Nimwegen. The evolutionary unfolding of complexity. In Laura Landweber, Erik Winfree, Richard Lipton, and Stephan Freeland, editors, Proceedings of the DIMACS Workshop on Evolution as Computation, New York, 1999, to appear. Springer-Verlag.Google Scholar
  32. 32.
    M. Sassanfar and J. W. Szostak, An RNA motif that binds ATP, Nature 364 (1993),550–553.CrossRefGoogle Scholar
  33. 33.
    Gerhard Steger, Thermal denaturation of double-stranded nucleic acids: Prediction of termperatures critical for gradient gel electrophoresis and polymerase chain reaction, Nucleic Acids Research 22 (1994), no. 14, 2760–2768.CrossRefGoogle Scholar
  34. 34.
    Willem P.C. Stemmer, DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution, Proceedings of the National Academy of Science, U.S.A. 91 (1994), 389–391.CrossRefGoogle Scholar
  35. 35.
    Willem P.C. Stemmer, The evolution of molecular computation, Science 270 (1995), 1510–1510.CrossRefGoogle Scholar
  36. 36.
    Willem P.C. Stemmer, Sexual PCR and Assembly PCR,The Encyclopedia of Molecular Biology and Molecular Medicine, (Robert Meyers, ed), VCH, New York, 1996, 447–457.Google Scholar
  37. 37.
    D.H. Wood, J. Chen, E. Antipov, W. Cedeno, and B. Lemieux, A DNA implementation of the Max 1s problem, GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, July 1999, Orlando, Florida, (W. Banzhaf, A.E. Eiben, M. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, eds), Morgan Kaufman, San Francisco, 1999, 1835–1842.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Elizabeth Goode
    • 1
  • David Harlan Wood
    • 1
  • Junghuei Chen
    • 1
  1. 1.University of DelawareNewarkUSA

Personalised recommendations