Reasoning about the Elementary Functions of Complex Analysis

  • Robert M. Corless
  • James H. Davenport
  • David J. Jeffrey
  • Gurjeet Litt
  • Stephen M. Watt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1930)

Abstract

There are many problems with the simplification of elementary functions, particularly over the complex plane. Systems tend to make major errors, or not to simplify enough. In this paper we outline the “unwinding number” approach to such problems, and show how it can be used to prevent errors and to systematise such simplification, even though we have not yet reduced the simplification process to a complete algorithm. The unsolved problems are probably more amenable to the techniques of artificial intelligence and theorem proving than the original problem of complex-variable analysis.

Keywords

Elementary functions Branch cuts Complex identities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M. & Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. US Government Printing Office, 1964. 10th Printing December 1972.Google Scholar
  2. 2.
    Bradford, R.J., Algebraic Simplification of Multiple-Valued Functions. Proc. DISCO '92(Spri nger Lecture Notes in Computer Science 721, ed. J.P. Fitch), Springer, 1993, pp. 13–Google Scholar
  3. 3.
    Carathéodory, C., Theory of functions of a complex variable (trans. F. Steinhardt), 2nd. ed., Chelsea Publ., New York, 1958.Google Scholar
  4. 4.
    Corless, R.M., Davenport, J.H., Jeffrey, D.J. & Watt, S.M., “According to Abramowitz and Stegun”. To appear in SIGSAM Bulletin. OpenMath Project (Esprit 24969) deliverable 1.4.6.Google Scholar
  5. 5.
    Corless, R.M. & Jeffrey, D.J., The Unwinding Number. SIGSAM Bulletin 30 (1996) 2, pp. 28–35.CrossRefGoogle Scholar
  6. 6.
    Davenport, J.H. & Fischer, H.-C., Manipulation of Expressions. Improving Floating-Point Programming (ed. P.J.L. Wallis), Wiley, 1990, pp. 149–167.Google Scholar
  7. 10.
    Kahan, W.,Branch Cuts for Complex Elementary Functions. The State of Art in Numerical Analysis (ed. A. Iserles & M.J.D. Powell), Clarendon Press, Oxford, 1987, pp. 165–211.Google Scholar
  8. 11.
    Litt, G., Unwinding numbers for the Logarithmic, Inverse Trigonometric and Inverse Hyperbolic Functions. M.Sc. project, Department of Applied Mathematics, University of Western Ontario, December 1999.Google Scholar
  9. 12.
    Steele, G.L.,Jr., Common LISP: The Language, 2nd. edition. Digital Press, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Robert M. Corless
    • 1
  • James H. Davenport
    • 2
  • David J. Jeffrey
    • 1
  • Gurjeet Litt
    • 1
  • Stephen M. Watt
    • 1
  1. 1.Ontario Research Centre for Computer AlgebraUniversity of Western OntarioCanada
  2. 2.Dept. Mathematical SciencesUniversity of BathEngland

Personalised recommendations