Numerical Implicitization of Parametric Hypersurfaces with Linear Algebra

  • Robert M. Corless
  • Mark W. Giesbrecht
  • Ilias S. Kotsireas
  • Stephen M. Watt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1930)

Abstract

We present a new method for implicitization of parametric curves, surfaces and hypersurfaces usingessen tially numerical linear algebra. The method is applicable for polynomial, rational as well as trigonometric parametric representations. The method can also handle monoparametric families of parametric curves, surfaces and hypersurfaces with a small additional amount of human interaction. We illustrate the method with a number of examples. The efficiency of the method compares well with the other available methods for implicitization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB88] Shreeram S. Abhyankar and Chanderjit L. Bajaj. Automatic parameterization of rational curves and surfaces iii: Algebraic plane curves. Computer Aided Geometric Design, 5:309–321, 1988.MATHCrossRefMathSciNetGoogle Scholar
  2. [AGR95] Cesar Alonso, Jaime Gutierrez, and Tomas Recio. An implicitization algorithm with fewer variables. Computer Aided Geometric Design, 12(3):251–258, 1995.MATHCrossRefMathSciNetGoogle Scholar
  3. [Buc88] Bruno Buchberger. Applications of gröbner bases in non-linear computational geometry. In J. R. Rice, editor, Mathematical Aspects of Scientific Software, volume 14of IMA Volumes in Mathematics and its applications, pages 59–87. Springer-Verlag, 1988.Google Scholar
  4. [CG92] Eng-Wee Chionh and Ronald N. Goldman. Degree, multiplicity, and inversion formulas for rational surfaces usingu-resultants. Computer Aided Geometric Design, 9:93–108, 1992.MATHCrossRefMathSciNetGoogle Scholar
  5. [FHL96] George Fix, Chih-Ping Hsu, and Tie Luo. Implicitization of rational parametric surfaces. Journal of Symbolic Computation, 21:329–336, 1996.MATHCrossRefMathSciNetGoogle Scholar
  6. [Gao00] Xiao-Shan Gao. Conversion between implicit and parametric representations of algebraic varieties. In Mathematics Mechanization and Applications, cademic Press, pages 1–17, 2000. personal communication, to appear.Google Scholar
  7. [GC92] Xiao-Shan Gao and Shang-Ching Chou. Implicitization of rational parametric equations. Journal of Symbolic Computation, 14:459–470, 1992.MATHCrossRefMathSciNetGoogle Scholar
  8. [GV97] Laureano González-Vega. Implicitization of parametric curves and surfaces by usingm ultidimensional newton formulae. Journal of Symbolic Computation, 23:137–151, 1997.MATHCrossRefMathSciNetGoogle Scholar
  9. [GVL95] Gene H. Golub and Charles Van Loan. Matrix Computations. Johns Hopkins, 3rd edition, 1995.Google Scholar
  10. [GVT95] L. González-Vega and G. Trujillo. Implicitization of parametric curves and surfaces by usings ymmetric functions. In A.H.M. Levelt, editor, Proc. ISSAC-95, ACM Press, pages 180–186, Montreal, Canada, july 1995.Google Scholar
  11. [Hob91] John D. Hobby. Numerically stable implicitization of cubic curves.ACM Transactions on Graphics, 10(3):255–296, 1991.MATHCrossRefGoogle Scholar
  12. [Hof89] Christoph M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann Publishers, Inc. California, 1989.Google Scholar
  13. [Hon97] Hoon Hong. Implicitization of nested circular curves. Journal of Symbolic Computation, 23:177–189, 1997.MATHCrossRefMathSciNetGoogle Scholar
  14. [HS98] Hoon Hong and Josef Schicho. Algorithms for trigonometric curves (simplification, implicitization, parameterization). Journal of Symbolic Computation, 26:279–300, 1998.MATHCrossRefMathSciNetGoogle Scholar
  15. [Kal90] Michael Kalkbrener. Implicitization of rational parametric curves and surfaces. In S. Sakata, editor, Proc. AAECC-8, volume 508of Lecture Notes in Computer Science, pages 249–259, Tokyo, Japan, august 1990.Google Scholar
  16. [Li89] Ziming Li. Automatic implicitization of parametric objects. Mathematics-Mechanization Research Preprints, 4:54–62, 1989.Google Scholar
  17. [LM94] Sandra Licciardi and Teo Mora. Implicitization of hypersurfaces and curves by the primbasissatz and basis conversion. In Mark Giesbrecht and Joachim von zur6Gathen, editors, Proc. ISSAC-94, ACM Press, pages 191–196, Oxford, England, april 1994.Google Scholar
  18. [MC92a] Dinesh Manocha and John F. Canny. Algorithm for implicitizing rational parametric surfaces. Computer Aided Geometric Design, 9:25–50, 1992.MATHCrossRefMathSciNetGoogle Scholar
  19. [MC92b] Dinesh Manocha and John F. Canny. Implicit representation of rational parametric surfaces. Journal of Symbolic Computation, 13:485–510, 1992.MATHMathSciNetCrossRefGoogle Scholar
  20. [SAG84] T. W. Sederberg, D. C. Anderson, and R. N. Goldman. Implicit representation of parametric curves amd surfaces. Computer Vision, Graphics, and Image Processing, 28:72–84, 1984.CrossRefGoogle Scholar
  21. [SAG85] T. W. Sederberg, D. C. Anderson, and R. N. Goldman. Implicitization, inversion, and intersection of planar rational cubic curves. Computer Vision, Graphics, and Image Processing, 31:89–102, 1985.CrossRefGoogle Scholar
  22. [Sch98] Josef Schicho. Rational parametrization of surfaces. Journal of Symbolic Computation, 26(1):1–30, 1998.MATHCrossRefMathSciNetGoogle Scholar
  23. [SGD97] Thomas Sederberg, Ron Goldman, and Hang Du. Implicitizing rational curves by the method of movingalg ebraic curves. Journal of Symbolic Computation, 23(2-3):153–175, 1997.MATHCrossRefMathSciNetGoogle Scholar
  24. [SSQK94] Thomas W. Sederberg, Takafumi Saito, Dongxu Qi, and Krzysztof S. Klimaszewski. Curve implicitization usingmo vinglin es. Computer Aided Geometric Design, 11(6):687–706, 1994.CrossRefMathSciNetGoogle Scholar
  25. [SW91] J.R. Sendra and F. Winkler. Symbolic parametrization of curves. Journal of Symbolic Computation, 12(6):607–631, 1991. aMATHCrossRefMathSciNetGoogle Scholar
  26. [SW98] J.R. Sendra and F. Winkler. Real parametrization of algebraic curves. In J. Calmet and J. Plaza, editors, Proc. AISC'98, volume 1476 of Lecture Notes in Artificial Intelligence, pages 284–295, Plattsburgh, New York, USA, september 1998.Google Scholar
  27. [Tro83] John L. Troutman. Variational Calculus with Elementary Convexity. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1983.Google Scholar
  28. [Wan95] Dongming Wang. Reasoning about geometric problems using an elimination method. In Jochen Pfalzgraf and Dongming Wang, editors, Automated Practical Reasoning Algebraic Approaches, Lecture Notes in Computer Science, pages 147–185, Tokyo, Japan, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Robert M. Corless
    • 1
  • Mark W. Giesbrecht
    • 1
  • Ilias S. Kotsireas
    • 1
  • Stephen M. Watt
    • 1
  1. 1.Canada Ontario Research Centre for Computer AlgebraUniversity of Western OntarioLondonOntario

Personalised recommendations