Hyper-bent Functions

  • Amr M. Youssef
  • Guang Gong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2045)

Abstract

Bent functions have maximal minimum distance to the set of affine functions. In other words, they achieve the maximal minimum distance to all the coordinate functions of affine monomials. In this paper we introduce a new class of bent functions which we call hyper-bent functions. Functions within this class achieve the maximal minimum distance to all the coordinate functions of all bijective monomials. We provide an explicit construction for such functions. We also extend our results to vectorial hyper-bent functions.

Key words

Boolean functions bent functions hyper-bent functions nonlinearity 

References

  1. 1.
    R.E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley Publishing Company, 1983.Google Scholar
  2. 2.
    C. Carlet, A construction of bent functions, Proc. of Third Conference of Finite Fields and Applications, Glasgow, London Mathematical Society, Lecture Series 233, Cambridge University Press, 1996, pp. 47–58.Google Scholar
  3. 3.
    C. Carlet, Two new classes of bent functions, Advances in Cryptology-EuroCrypt'85, Lecture Notes in Computer Science, No. 765, Springer-Verlag, 1994, pp. 77–101.Google Scholar
  4. 4.
    C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Designs, Codes and Cryptography. vol.15, no.2; Nov. 1998; pp.125–156.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    C. Carlet, Hyper-bent functions, PRAGOCRYPT'96, Czech Technical University Publishing House, Prague, pp. 145–155, 1996.Google Scholar
  6. 6.
    J. F. Dillon, Elementary Hadamard Difference sets, Ph.D. Dissertation, University of Maryland, 1974.Google Scholar
  7. 7.
    J. F. Dillon, Elementary Hadamard Difference sets, in Proc. Sixth S-E Conf. Comb. Graph Theory and Comp., 237–249, F. Hoffman et al. (Eds), Winnipeg Utilitas Math (1975).Google Scholar
  8. 8.
    H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, Proceedings of Fast Software Encryption, Second International Workshop, Springer-Verlag, 1995, pp. 61–74.Google Scholar
  9. 9.
    S.W. Golomb, Shift Register Sequences, Aegean Park Press. Laguna Hills, California. 1982.Google Scholar
  10. 10.
    G. Gong, Theory and applications of q-ary interleaved sequences, IEEE Trans. on Inform. Theory, vol. 41, No. 2, 1995, pp. 400–411.MATHCrossRefGoogle Scholar
  11. 11.
    G. Gong and S. W. Golomb, Transform Domain Analysis of DES, IEEE transactions on Information Theory. Vol. 45. no. 6. pp. 2065–2073. September, 1999.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    T. Jakobsen and L. Knudsen, The Interpolation Attack on Block Ciphers, LNCS 1267, Fast Software Encryption. pp. 28–40. 1997.CrossRefGoogle Scholar
  13. 13.
    T. Jakobsen, Cryptanalysis of Block Ciphers with Probabilistic Non-linear Relations of Low Degree, Proceedings of Crypto'99. LNCS 1462. pp. 213–222. 1999.Google Scholar
  14. 14.
    J. Daemen and V. Rijmen, AES Proposal: Rijndael, http://csrc.nist.gov/encryption/aes/rijndael/
  15. 15.
    R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Volume 20, Addison-Wesley, 1983.Google Scholar
  16. 16.
    M. Matsui, Linear Cryptanalysis method for DES cipher Advances in Cryptology, Proceedings of Eurocrypt'93, LNCS 765, pp. 386–397, Springer-Verlag, 1994.Google Scholar
  17. 17.
    R. J. McEliece, Finite Fields For Computer Scientists and Engineers, Kluwer Academic Publishers, Dordrecht, 1987.MATHGoogle Scholar
  18. 18.
    R.L. McFarland, A family of Noncyclic Difference Sets, Journal of Comb. Th. (Series A) 15, pp. 1–10, 1973.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    W. Meier and O. Staffelbach, Nonlinearity criteria for cryptographic functions, Proceedings of EUROCRYPT '89, Springer-Verlag, Berlin, Germany, 1990 pp. 549–62.Google Scholar
  20. 20.
    K. Nyberg, S-boxes and round functions with controllable linearity and differential uniformity, Proceedings of Fast Software Encryption, Second International Workshop, Springer-Verlag, Berlin, Germany, 1995, pp.111–130.Google Scholar
  21. 21.
    K. Nyberg, Perfect nonlinear S-boxes, Proceedings of EUROCRYPT '91, Springer-Verlag, Berlin, Germany, 1991, pp.378–86.Google Scholar
  22. 22.
    P. Sarkar and S. Maitra, Nonlinearity Bounds and Constructions of Resilient Boolean Functions, Proceedings of CRYPTO '2000, Springer-Verlag, Berlin, Germany, LNCS 1880, pp. 515–532.Google Scholar
  23. 23.
    O.S. Rothaus, On bent functions, J. Combinatorial Theory, vol. 20(A), 1976, pp.300–305.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    T. Satoh, T. Iwata and K. Kurosawa, On cryptographically secure vectorial Boolean functions, Proceedings of ASIACRYPT'99, Springer-Verlag, Berlin, Germany, 1999, pp. 20–28.Google Scholar
  25. 25.
    T. Iwata and K. Kurosawa, Probabilistic higher order differential cryptanalysis and higher order bent functions. Proceedings of ASIACRYPT'99, Springer-Verlag, Berlin, Germany, 1999, pp. 62–74.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Amr M. Youssef
    • 1
  • Guang Gong
    • 2
  1. 1.Center for Applied Cryptographic Research Department of Combinatorics & OptimizationUniversity of WaterlooWaterlooCANADA
  2. 2.Center for Applied Cryptographic Research Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCANADA

Personalised recommendations