Advertisement

On External-Memory MST, SSSP, and Multi-way Planar Graph Separation

Extended Abstract
  • Lars Arge
  • Gerth Stølting Brodal
  • Laura Toma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1851)

Abstract

Recently external memory graph algorithms have received considerable attention because massive graphs arise naturally in many applications involving massive data sets. Even though a large number of I/O-efficient graph algorithms have been developed, a number of fundamental problems still remain open. In this paper we develop an improved algorithm for the problem of computing a minimum spanning tree of a general graph, as well as new algorithms for the single source shortest paths and the multi-way graph separation problems on planar graphs.

Keywords

Span Tree Geographic Information System Planar Graph Minimum Span Tree Priority Queue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A functional approach to external graph algorithms. In Proc. Annual European Symposium on Algorithms, LNCS 1461, pages 332–343, 1998.Google Scholar
  2. 2.
    P. K. Agarwal, L. Arge, T. M. Murali, K. Varadarajan, and J. S. Vitter. I/O-efficient algorithms for contour line extraction and planar graph blocking. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 117–126, 1998.Google Scholar
  3. 3.
    A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related problems. Communications of the ACM, 31(9):1116–1127, 1988.CrossRefMathSciNetGoogle Scholar
  4. 4.
    ARC/INFO. Understanding GIS—the ARC/INFO method. ARC/INFO, 1993. Rev. 6 for workstations.Google Scholar
  5. 5.
    L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Proc. Workshop on Algorithms and Data Structures, LNCS 955, pages 334–345, 1995. A complete version appears as BRICS technical report RS-96-28, University of Aarhus.Google Scholar
  6. 6.
    L. Arge. The I/O-complexity of ordered binary-decision diagram manipulation. In Proc. Int. Symp. on Algorithms and Computation, LNCS 1004, pages 82–91, 1995. A complete version appears as BRICS technical report RS-96-29, University of Aarhus.CrossRefGoogle Scholar
  7. 7.
    L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems on grid-based terrains. In Proc. Workshop on Algorithm Engineering and Experiments, 2000.Google Scholar
  8. 8.
    O. Borůvka. O jistém problému minimálním. Práca Moravské Přírodovědecké Společnosti, 3:37–58, 1926.Google Scholar
  9. 9.
    G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority queues. In Proc. Scandinavian Workshop on Algorithms Theory, LNCS 1432, pages 107–118, 1998.Google Scholar
  10. 10.
    A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. Westbrook. On external memory graph traversal. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 859–860, 2000.Google Scholar
  11. 11.
    A. L. Buchsbaum and J. R. Westbrook. Maintaining hierarchical graph views. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 566–575, 2000.Google Scholar
  12. 12.
    Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter. External-memory graph algorithms. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 139–149, 1995.Google Scholar
  13. 13.
    F. Chin, J. Lam, and I. Chen. Efficient parallel algorithms for some graph problems. Communications of ACM, 1982.Google Scholar
  14. 14.
    R. Cole and U. Vishkin. Approximate parallel scheduling. II. Applications to logarithmic-time optimal parallel graph algorithms. Information and Computation, 92(1):1–47, May 1991.Google Scholar
  15. 15.
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge, Mass., 1990.MATHGoogle Scholar
  16. 16.
    E. Feuerstein and A. Marchetti-Spaccamela. Memory paging for connectivity and path problems in graphs. LNCS, 762:416–425, 1993.Google Scholar
  17. 17.
    G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal of Computing, 16:1004–1022, 1987.MATHCrossRefGoogle Scholar
  18. 18.
    M. Goodrich. Planar separators and parallel polygon triangulation. Journal of Computer and System Sciences, 51(3):374–389, 1995.CrossRefMathSciNetGoogle Scholar
  19. 19.
    D. Hutchinson, A. Maheshwari, and N. Zeh. An external memory data structure for shortest path queries. In Proc. 5th Annual Int. Conf. Computing and Combinatorics, number 1627 in LNCS. Springer-Verlag, July 1999.CrossRefGoogle Scholar
  20. 20.
    D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley, Reading MA, second edition, 1998.Google Scholar
  21. 21.
    D. Kozen. The Design and Analysis of Algorithms. Springer, Berlin, 1992.Google Scholar
  22. 22.
    V. Kumar and E. Schwabe. Improved algorithms and data structures for solving graph problems in external memory. In Proc. IEEE Symp. on Parallel and Distributed Processing, pages 169–177, 1996.Google Scholar
  23. 23.
    R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal of Applied Math., 36:177–189, 1979.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    A. Maheshwari and N. Zeh. External memory algorithms for outerplanar graphs. Manuscript, 1999.Google Scholar
  25. 25.
    K. Munagala and A. Ranade. I/O-complexity of graph algorithm. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 687–694, 1999.Google Scholar
  26. 26.
    M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external graph searching. Algorithmica, 16(2):181–214, 1996.MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. H. Reif, editor. Synthesis of Parallel Algorithms, chapter 3, pages 115–194. Morgan Kaufmann, 1993.Google Scholar
  28. 28.
    R. E. Tarjan. Data structures and network algorithms. SIAM, Philadelphia, 1983.Google Scholar
  29. 29.
    J. D. Ullman and M. Yannakakis. The input/output complexity of transitive closure. Annals of Mathematics and Artificial Intellegence, 3:331–360, 1991.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    J. S. Vitter. External memory algorithms (invited tutorial). In Proc. of the 1998 ACM Symposium on Principles of Database Systems, pages 119–128, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Lars Arge
    • 1
  • Gerth Stølting Brodal
    • 2
  • Laura Toma
    • 1
  1. 1.Duke UniversityDurhamUSA
  2. 2.University of AarhusÅrhus CDenmark

Personalised recommendations