Advertisement

A Package TESTAS for Checking Some Kinds of Testability

  • A. N. Trahtman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2608)

Abstract

We implement a set of procedures for deciding whether or not a language given by its minimal automaton or by its syntactic semigroup is locally testable, right or left locally testable, threshold locally testable, strictly locally testable, or piecewise testable. The bounds on order of local testability of transition graph and order of local testability of transition semigroup are also found. For given k, the k-testability of transition graph is verified. Some new effective polynomial time algorithms are used. These algorithms have been implemented as a C/C++ package.

Keywords

Space Complexity Polynomial Time Algorithm Cayley Graph Package Testa Local Testability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Beauquier, J.E. Pin, Factors of words, Lect. Notes in Comp. Sci., 372(1989), 63–79.Google Scholar
  2. 2.
    J.A. Brzozowski, I. Simon, Characterizations of locally testable events, Discrete Math. 4(1973), 243–271.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    P. Caron, LANGAGE: A Maple package for automaton characterization of regular languages, Springer, Lect. Notes in Comp. Sci., 1436(1998), 46–55.Google Scholar
  4. 4.
    P. Caron, Families of locally testable languages, Theoret. Comput. Sci., 242(2000), 361–376.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J.M. Camparnaud, G. Hansel, Automate, a computing package for automata and finite semigroups, J. of Symbolic Comput., 12(1991), 197–220.CrossRefGoogle Scholar
  6. 6.
    G. Cousineau, J.F. Perrot, J.M. Rifflet, APL programs for direct computation of a finite semigroup, APL Congress 73, Amsterdam, North Holl. Publ., (1973) 67–74.Google Scholar
  7. 7.
    V. Froidure, J.-E. Pin, Algorithms for computing finite semigroups. F. Cucker and M. Shub eds., Foundations of Comp. Math. (1997), 112–126.Google Scholar
  8. 8.
    P. Garcia, Jose Ruiz, Right and left locally testable languages, Theoret. Comput. Sci., 246(2000), 253–264.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Kim, R. McNaughton, R. McCloskey, A polynomial time algorithm for the local testability problem of deterministic finite automata, IEEE Trans. Comput., N10, 40(1991) 1087–1093.CrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Kim, R. McNaughton, Computing the order of a locally testable automaton, Lect. Notes in Comp. Sci., 560(1991) 186–211.Google Scholar
  11. 11.
    R. König, Reduction algorithm for some classes of aperiodic monoids, R.A.I.R.O. Theor.Inform., 19, 3(1985), 233–260.zbMATHGoogle Scholar
  12. 12.
    E. Leiss, Regpack, an interactive package for regular languages and finite automata, Research report CS-77-32, Univ. of Waterloo, 1977.Google Scholar
  13. 13.
    O. Matz, A. Miller, A. Pottho., W. Thomas, E. Valkema, Report on the program AMoRE, Inst. inf. und pract. math., Christian-Albrecht Univ. Kiel, 1995.Google Scholar
  14. 14.
    R. McNaughton, Algebraic decision procedure for local testability, Math. Syst. Theory, 8( 1974), 60–76.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    R. McNaughton, S. Papert, Counter-free automata, M.I.T. Press Mass., (1971).zbMATHGoogle Scholar
  16. 16.
    A. Okhotin, Whale Calf, a parser generator for conjunctive grammars. 7-th Int. Conf. on Impl. and Appl. of Automata, CIAA2002, Tours, 2002, 211–216.Google Scholar
  17. 17.
    D. Raymond, D. Wood, Grail, a C++ library for automata and expressions, J. of Symb. Comp., 17(1994) 341–350.zbMATHCrossRefGoogle Scholar
  18. 18.
    I. Simon, Piecewise testable events, Lect. Notes in Comp. Sci., 33(1975), 214–222.Google Scholar
  19. 19.
    J. Stern, Complexity of some problems from the theory of automata. Inf. and Control, 66(1985), 163–176.zbMATHCrossRefGoogle Scholar
  20. 20.
    K. Sutner, Finite State Mashines and Syntactic Semigroups, The Mathematica J., 2(1991), 78–87.Google Scholar
  21. 21.
    A.N. Trahtman, The varieties of testable semigroups. Semigroup Forum, 27, (1983), 309–318.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    A.N. Trahtman, A polynomial time algorithm for local testability and its level. Int. J. of Algebra and Comp., vol. 9, 1(1998), 31–39.CrossRefMathSciNetGoogle Scholar
  23. 23.
    A.N. Trahtman, Identities of locally testable semigroups. Comm. in Algebra, v. 27, 11(1999), 5405–5412.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    A.N. Trahtman, Algorithms finding the order of local testability of deterministic finite automaton and estimation of the order, Th. Comp. Sci., 235(2000), 183–204.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    A.N. Trahtman, Piecewise and local threshold testability of DFA. Lect. Notes in Comp. Sci., 2138(2001), 347–358.Google Scholar
  26. 26.
    A.N. Trahtman, An algorithm to verify local threshold testability of deterministic finite automata. Lect. Notes in Comp. Sci., 2214(2001), 164–173.Google Scholar
  27. 27.
    B.W. Watson, The design and implementation of the FIRE Engine: A C++ toolkit for Finite Automata and Regular Expressions, Comp. Sci. Rep. 94722, Endhoven Univ. of Techn. 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. N. Trahtman
    • 1
  1. 1.Dep. of Math. and St.Bar-Ilan UniversityRamat GanIsrael

Personalised recommendations