State Complexity of Basic Operations on Nondeterministic Finite Automata

  • Markus Holzer
  • Martin Kutrib
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2608)


The state complexities of basic operations on nondeterministic finite automata (NFA) are investigated. In particular, we consider Boolean operations, catenation operations - concatenation, iteration, λ- free iteration - and the reversal on NFAs that accept finite and infinite languages over arbitrary alphabets. Most of the shown bounds are tight in the exact number of states, i.e. the number is sufficient and necessary in the worst case. For the complementation tight bounds in the order of magnitude are proved. It turns out that the state complexities of operations on NFAs and deterministic .nite automata (DFA) are quite different. For example, the reversal and concatenation have exponential state complexity on DFAs but linear complexity on NFAs. Conversely, the complementation can be done with linear complexity on DFAs but needs exponentially many states on NFAs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Câmpeanu, C., Čulik, K., Salomaa, K., and Yu, S. State complexity of basic operations on.nite languages. Fourth International Workshop on Implementing Automata, LNCS 2214, pp. 60–70.Google Scholar
  2. 2.
    Câmpeanu, C., Sântean, N., and Yu, S. Minimal cover-automata for.nite languages. Theoret. Comput. Sci. 267 (2001), 3–16.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Goldstine, J., Kintala, C., and Wotschke, D. On measuring nondeterminism in regular languages. Inform. Comput. 86 (1990), 179–194.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Goldstine, J., Leung, H., and Wotschke, D. On the relation between ambiguity and nondeterminism in.nite automata. Inform. Comput. 100 (1992), 261–270.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hopcroft, J. E. and Ullman, J. D. Introduction to Automata Theory, Language, and Computation. Addison-Wesley, Reading, Massachusetts, 1979.Google Scholar
  6. 6.
    Kintala, C. M. and Wotschke, D. Amounts of nondeterminism in.nite automata. Acta Inf. 13 (1980), 199–204.MATHMathSciNetGoogle Scholar
  7. 7.
    Leiss, E. Succinct representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13 (1981), 323–330.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mereghetti, C. and Pighizzini, G. Optimal simulations between unary automata. STACS 1998, LNCS 1373, 1998, pp. 139–149.CrossRefGoogle Scholar
  9. 9.
    Mereghetti, C. and Pighizzini, G. Unary automata simulations and cyclic languages. International Workshop on Descriptional Complexity of Automata, Grammars and Related Structures, 1999, pp. 145–153.Google Scholar
  10. 10.
    Meyer, A. R. and Fischer, M. J. Economy of description by automata, grammars, and formal systems. IEEE Symposium SWAT 1971, pp. 188–191.Google Scholar
  11. 11.
    Salomaa, K. and Yu, S. NFA to DFA transformation for.nite languages over arbitrary alphabets. J. Aut., Lang. and Comb. 2 (1997), 177–186.MATHMathSciNetGoogle Scholar
  12. 12.
    Yu, S. Regular languages. In Rozenberg, G. and Salomaa, A. (eds.), Handbook of Formal Languages I. Springer, 1997, chapter 2, pp. 41–110.Google Scholar
  13. 13.
    Yu, S. State complexity of regular languages. J. Aut., Lang. and Comb. 6 (2001), 221–234.MATHGoogle Scholar
  14. 14.
    Yu, S. and Zhuang, Q. On the state complexity of intersection of regular languages. SIGACT News 22.3 (1991), 52–54.CrossRefGoogle Scholar
  15. 15.
    Yu, S., Zhuang, Q., and Salomaa, K. The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125 (1994), 315–328.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Markus Holzer
    • 1
  • Martin Kutrib
    • 2
  1. 1.Institut für InformatikTechnische Universität MünchenMünchenGermany
  2. 2.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations