Advertisement

The Complexity of Physical Mapping with Strict Chimerism

  • Stephan Weis
  • Rüdiger Reischuk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1858)

Abstract

We analyze the algorithmic complexity of physical mapping by hybridization in situations of restricted forms of chimeric errors, which is motivated by typical experimental conditions. The constituents of a chimeric probe always occur in pure form in the data base, too. This problem can be modelled by a variant of the k-consecutive ones problem. We show that even under this restriction the corresponding decision problem is \( \mathcal{N}\mathcal{P} \)-complete. Considering the most important situation of strict 2-chimerism, for the related optimization problem a complete separation between efficiently solvable and \( \mathcal{N}\mathcal{P} \)-hard cases is given based on the sparseness parameters of the clone library. For the favourable case we present a fast algorithm and a data structure that provides an effective description of all optimal solutions to the problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Alizadeh, R. Karp, L. Newberg, D. Weisser, Physical mapping of chromosomes: a combinatorial problem in molecular biology, Algorithmica 13, 52–76, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    F. Alizadeh, R. Karp, D. Weisser, G. Zweig, Physical mapping of chromosomes using unique probes, Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms SODA’94, 489–500, 1994.Google Scholar
  3. [3]
    J. Atkins, M. Middendorf, On physical mapping and the consecutive ones property for sparse matrices, DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research and Computer Science 71, 1996.Google Scholar
  4. [4]
    K. Booth, G. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Computer and System Sciences 13, 335–379, 1976.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Fulkerson, O. Gross, Incidence matrices and interval graphs, Pacific Journal of Mathematics 15, 835–856, 1965.zbMATHMathSciNetGoogle Scholar
  6. [6]
    P. Goldberg, M. Golumbic, H. Kaplan, R. Shamir, Four strikes against physical mapping of DNA, J. Computational Biology 2, 139–152, 1995.CrossRefGoogle Scholar
  7. [7]
    D. Greenberg, S. Istrail, The chimeric mapping problem: Algorithmic strategies and performance evaluation on synthetic genomic data, Computers and Chemistry 18, 207–220, 1994.zbMATHCrossRefGoogle Scholar
  8. [8]
    D. Greenberg, S. Istrail, Physical Mapping by STS Hybridization: Algorithmic Strategies and the challenge of Software Evaluation, J. Comp. Biology 2, 219–273, 1995.Google Scholar
  9. [9]
    M. Garey, D. Johnson, Computers and Intractability: A Guide to NP-Completeness, Freeman, 1979.Google Scholar
  10. [10]
    M. Garey, D. Johnson, R. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Computing 5, 704–714, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    To Know Ourselves. Human Genome Program, U.S. Department of Energy, 1996.Google Scholar
  12. [12]
    W. Hsu. A simple test for the consecutive ones property, Proc. 3rd Int. Symposium on Algorithms and Computation ISAAC’92, LNCS650, 459–468, 1992.Google Scholar
  13. [13]
    W. Hsu, On physical mapping algorithms: an error tolerant test for the consecutive ones property, Proc. 3rd Int. Conf. Computing and Combinatorics, COCOON’97, LNCS 1267, 242–250, 1997.Google Scholar
  14. [14]
    H. Kaplan, R. Shamir, R. Tarjan. Tractability of parameterized completion problems on chordal and interval graphs: Minimum fill-in and physical mapping, Proc. 35th Symp. on Foundations of Computer Science FOCS’94, 780–793, 1994.Google Scholar
  15. [15]
    N. Korte, R. Möhring. An incremental linear-time algorithm for recognizing interval graphs, SIAM J. Computing 18, 68–81, 1989.zbMATHCrossRefGoogle Scholar
  16. [16]
    S. Weis, Das Entscheidungsproblem Physikalische Kartierung mit starkchimerischen Fehlern, Technical Report A-99-05, Med. Uni. Lübeck, Institut für Theoretische Informatik, 1999.Google Scholar
  17. [17]
    S. Weis, Zur algorithmischen Komplexität des Optimierungsproblems Physikalische Kartierung mit starkchimerischen Fehlern, Technical Report A-99-06, Med. Uni. Lübeck, Institut für Theoretische Informatik, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Stephan Weis
    • 1
  • Rüdiger Reischuk
    • 1
  1. 1.Institut für Theoretische InformatikMU LübeckLübeckGermany

Personalised recommendations