Computing Optimal Embeddings for Planar Graphs

  • Petra Mutzel
  • René Weiskircher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1858)


We study the problem of optimizing over the set of all combinatorial embeddings of a given planar graph. At IPCO’ 99 we presented a first characterization of the set of all possible embeddings of a given biconnected planar graph G by a system of linear inequalities. This system of linear inequalities can be constructed recursively using SPQR-trees and a new splitting operation. In general, this approach may not be practical in the presence of high degree vertices.

In this paper, we present an improvement of the characterization which allows us to deal efficiently with high degree vertices using a separation procedure. The new characterization exposes the connection with the asymmetric traveling salesman problem thus giving an easy proof that it is NP-hard to optimize arbitrary objective functions over the set of combinatorial embeddings.

Computational experiments on a set of over 11000 benchmark graphs show that we are able to solve the problem for graphs with 100 vertices in less than one second and that the necessary data structures for the optimization can be build in less than 12 seconds.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 7:303–326, 1997.MATHGoogle Scholar
  2. [2]
    G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on Computing, 25(5):956–997, 1996.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. Lecture Notes in Computer Science, 1272:331–344, 1998.Google Scholar
  4. [4]
    D. Bienstock and C. L. Monma. Optimal enclosing regions in planar graphs. Networks, 19(1):79–94, 1989.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica, 5(1):93–109, 1990.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    J. Cai. Counting embeddings of planar graphs using DFS trees. SIAM Journal on Discrete Mathematics, 6(3):335–352, 1993.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    G. Carpaneto, M. Dell’Amico, and P. Toth. Exact solution of large scale asymmetric travelling salesman problems. ACM Transactions on Mathematical Software, 21(4):394–409, 1995.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. Fialko and P. Mutzel. A new approximation algorithm for the planar augmentation problem. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 260–269, San Francisco, California, 1998.Google Scholar
  9. [9]
    A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity testing. Lecture Notes in Computer Science, 894:286–297, 1995.Google Scholar
  10. [10]
    M. Jünger, S. Leipert, and P. Mutzel. A note on computing a maximal planar subgraph using PQ-trees. IEEE Transactions on Computer-Aided Design, 17(7):609–612, 1998.CrossRefGoogle Scholar
  11. [11]
    P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of a planar graph. Technical report, Max-Planck-Institut für Informatik, Saarbrücken, 1998.Google Scholar
  12. [12]
    P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of a planar graph. In G. Cornuéjols, R. Burkard, and G. Wöginger, Eds, Proceedings of the Seventh Conference on Integer Programming and Combinatorial Optimization (IPCO), volume 1610 of LNCS, pages 361–376. Springer Verlag, 1999.Google Scholar
  13. [13]
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing, 16(3):421–444, 1987.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Petra Mutzel
    • 1
  • René Weiskircher
    • 1
  1. 1.Technische Universität WienWien

Personalised recommendations