Analyzing the Performance of a Multiobjective GA-P Algorithm for Learning Fuzzy Queries in a Machine Learning Environment

  • Oscar Cordón
  • Enrique Herrera-Viedma
  • María Luque
  • Félix de Moya
  • Carmen Zarco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2715)


The fuzzy information retrieval model was proposed some years ago to solve several limitations of the Boolean model without a need of a complete redesign of the information retrieval system. However, the complexity of the fuzzy query language makes it difficult to formulate user queries. Among other proposed approaches to solve this problem, we find the Inductive Query by Example (IQBE) framework, where queries are automatically derived from sets of documents provided by the user. In this work we test the applicability of a multiobjective evolutionary IQBE technique for fuzzy queries in a machine learning environment. To do so, the Cranfield documentary collection is divided into two different document sets, labeled training and test, and the algorithm is run on the former to obtain several queries that are then validated on the latter.


Pareto Front Relevant Document Relevance Feedback Information Retrieval System Boolean Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bäck, T.: Evolutionary algorithms in theory and practice. Oxford (1996).Google Scholar
  2. 2.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addison (1999).Google Scholar
  3. 3.
    Bordogna, G., Carrara, P., Pasi, G.: Fuzzy approaches to extend Boolean information retrieval. In: P. Bosc, J. Kacprzyk (Eds.), Fuzziness in database management systems. Physica-Verlag (1995) 231–274.Google Scholar
  4. 4.
    Chen, H., et al.: A machine learning approach to inductive query by examples: an experiment using relevance feedback, ID3, GAs, and SA, Journal of the American Society for Information Science 49:8 (1998) 693–705.CrossRefGoogle Scholar
  5. 5.
    Coello, C.A., Van Veldhuizen, D.A., Lamant, G.B.: Evolutionary algorithms for solving multi-objective problems. Kluwer Academic Publishers (2002).Google Scholar
  6. 6.
    Cordón, O., Moya, F., Zarco, C.: A GA-P algorithm to automatically formulate extended Boolean queries for a fuzzy information retrieval system, Mathware & Soft Computing 7:2–3 (2000) 309–322.zbMATHGoogle Scholar
  7. 7.
    Cordón, O., Moya, F., Zarco, C.: A new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems, Soft Computing 6:5 (2002) 308–319.zbMATHGoogle Scholar
  8. 8.
    Cordón, O., Herrera-Viedma, E., Luque, M.: Evolutionary learning of Boolean queries by multiobjective genetic programming. In: Proc. PPSN-VII, Granada, Spain, LNCS 2439. Springer (September, 2002) 710–719.Google Scholar
  9. 9.
    Cordón, O., Moya, F., Zarco, C.: Automatic learning of multiple extended Boolean queries by multiobjective GA-P algorithms. In: V. Loia, M. Nikravesh, L.A. Zadeh (Eds.), Fuzzy Logic and the Internet. Springer (2003), in press.Google Scholar
  10. 10.
    Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and intervalschemata. In: L.D. Whitley (Ed.), Foundations of Genetic Algorithms 2. Morgan Kaufman (1993) 187–202.Google Scholar
  11. 11.
    Howard, L., D’Angelo, D.: The GA-P: a genetic algorithm and genetic programming hybrid, IEEE Expert 10:3 (1995) 11–15.CrossRefGoogle Scholar
  12. 12.
    Koza, J.: Genetic programming. On the programming of computers by means of natural selection. The MIT Press (1992).Google Scholar
  13. 13.
    Kraft, D.H., et al.: Genetic algorithms for query optimization in information retrieval: relevance feedback. In: E. Sanchez, T. Shibata, L.A. Zadeh, Genetic algorithms and fuzzy logic systems. World Scientific (1997) 155–173.Google Scholar
  14. 14.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs. Springer (1996).Google Scholar
  15. 15.
    Sanchez, E.: Importance in knowledge systems, Information Systems 14:6 (1989) 455–464.CrossRefGoogle Scholar
  16. 16.
    Smith, M.P., Smith, M.: The use of GP to build Boolean queries for text retrieval through relevance feedback, Journal of Information Science 23:6 (1997) 423–431.CrossRefGoogle Scholar
  17. 17.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results, Evolutionary Computation 8:2 (2000) 173–195.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Oscar Cordón
    • 1
  • Enrique Herrera-Viedma
    • 1
  • María Luque
    • 1
  • Félix de Moya
    • 2
  • Carmen Zarco
    • 3
  1. 1.Dept. of Computer Science and A.I.University of GranadaGranadaSpain
  2. 2.Dept. of Library and Information ScienceUniversity of GranadaGranadaSpain
  3. 3.PULEVA Food S.A.GranadaSpain

Personalised recommendations