Chance in Physics pp 165-181

Part of the Lecture Notes in Physics book series (LNP, volume 574)

Hidden Variables, Statistical Mechanics and the Early Universe

  • Antony Valentini
Chapter

Abstract

One of the central mysteries of quantum theory is that it seems to be fundamentally nonlocal—and yet the nonlocality cannot be used for practical signalling at a distance. The consistency of modern physics seems to depend on a ‘conspiracy’, in which nonlocality is hidden by quantum equilibrium noise. It is as if there is an underlying nonlocality which we are unable to control because of the statistical character of quantum events. I explore the possibility of quantum nonequilibrium for Hidden Variables Theories like the pilot-wave theory of de Broglie and Bohm in the context of nonlocality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Bacciagaluppi and A. Valentini (2001), in preparation.Google Scholar
  2. 2.
    D. Bohm (1952a), A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I, Physical Review 85, 166–179.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    D. Bohm (1952b), A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II, Physical Review 85, 180–193.CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    L. de Broglie (1928), La nouvelle dynamique des quanta, in: Electrons et Photons, Gauthier-Villars, Paris.Google Scholar
  5. 5.
    C. Dewdney, B. Schwentker and A. Valentini (2001), in preparation.Google Scholar
  6. 6.
    D. Dürr, S. Goldstein and N. Zanghí (1992a), Quantum equilibrium and the origin of absolute uncertainty, Journal of Statistical Physics 67, 843–907.MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    D. Dürr, S. Goldstein and N. Zanghí (1992b), Quantum mechanics, randomness, and deterministic reality, Physics Letters A 172, 6–12.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    H. Frisk (1997), Properties of the trajectories in Bohmian mechanics, Physics Letters A 227, 139–142.MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa and H. Hirai (2000), A singlephoton detector in the far-infrared range, Nature 403, 405–407.CrossRefADSGoogle Scholar
  10. 10.
    R. Tolman (1938), The Principles of Statistical Mechanics, Oxford.Google Scholar
  11. 11.
    A. Valentini (1991a), Signal-locality, uncertainty, and the subquantum H-theorem. I, Physics Letters A 156, 5–11.CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. Valentini (1991b), Signal-locality, uncertainty, and the subquantum H-theorem. II, Physics Letters A 158, 1–8.CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    A. Valentini (1992), On the pilot-wave theory of classical, quantum and subquantum physics, PhD thesis, SISSA/ISAS, Trieste, Italy.Google Scholar
  14. 14.
    A. Valentini (1996), Pilot-wave theory of fields, gravitation and cosmology, in: Bohmian Mechanics and Quantum Theory:an Appraisal, 45–66 (eds. J.T. Cushing et al.), Kluwer.Google Scholar
  15. 15.
    A. Valentini (1997), On Galilean and Lorentz invariance in pilot-wave dynamics, Physics Letters A 228, 215–222.MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    A. Valentini (2001a), Pilot-Wave Theory:an Alternative Approach to Modern Physics, Springer, to be published.Google Scholar
  17. 17.
    A. Valentini (2001b), to be submitted.Google Scholar
  18. 18.
    A. Valentini (2001c), to be submitted.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Antony Valentini
    • 1
    • 2
    • 3
  1. 1.Theoretical Physics, Blackett LaboratoryImperial CollegeLondonEngland
  2. 2.Center for Gravitational Physics and Geometry, Department of PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Augustus CollegeLondonEngland

Personalised recommendations