Alternating Fixpoint Theory for Logic Programs with Priority

  • Kewen Wang
  • Lizhu Zhou
  • Fangzhen Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1861)

Abstract

van Gelder’s alternating fixpoint theory has proven to be a very useful tool for unifying and characterizing various semantics for logic programs without priority. In this paper we propose an extension of van Gelder’s alternating fixpoint theory and show that it can be used as a general semantic framework for logic programs with priority. Specifically, we define three declarative and model-theoretic semantics in this framework for prioritied logic programs: prioritized answer sets, prioritized regular extensions and prioritized well-founded model. We show that all of these semantics are natural generalizations of the corresponding semantics for logic programs without priority. We also show that these semantics have some other desirable properties. In particular, they can handle conflicts caused indirectly by the priorities.

Keywords

Logic programs alternating fixpoints priority answer sets well-founded model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Analyti, S. Pramanik. Reliable semantics for extended logic programs with rule prioritization. Journal of Logic and Computation, 303–325, 1995.Google Scholar
  2. 2.
    K. Apt, H. Blair and A. Walker. Towards a theory of declarative knowledge. In: J. Minker ed. Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Washington, pages 89–148, 1988.Google Scholar
  3. 3.
    F. Badder, B. Hollunder. Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. Journal of Automated Reasoning, 15(1), 41–68, 1995.CrossRefMathSciNetGoogle Scholar
  4. 4.
    C. Baral, J. Lobo. Defeasible specifications in action theories. In: Proceedings of IJCAI’97, Morgan Kaufmann, pages 1441–1446, 1997.Google Scholar
  5. 5.
    G. Brewka. Well-founded semantics for extended logic programs with dynamic preferences. J. AI Research, 4: 19–36, 1996.MATHMathSciNetGoogle Scholar
  6. 6.
    G. Brewka, T. Either. Preferred answer sets for extended logic programs, Artificial Intelligence, 109(1–2), 295–356, 1999.Google Scholar
  7. 7.
    J. Delgrade, T. Schaub. Compiling reasoning with and about preferences in default logic. In: Proc. IJCAI’97, pages 168–174, 1997.Google Scholar
  8. 8.
    D. Gabbay, E. Laenens and D. Vermeir. Credulous vs. skeptical semantics for ordered logic programs. In: Proc. KR’92, pages 208–217, 1992.Google Scholar
  9. 9.
    M. Gelfond, V. Lifschitz. The stable model semantics for logic programming, in Logic Programming: Proc. Fifth Intl Conference and Symposium, pages 1070–1080, MIT Press, 1988.Google Scholar
  10. 10.
    M. Gelfond, V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9: 365–386, 1991.CrossRefGoogle Scholar
  11. 11.
    M. Gelfond, T. Son. Reasoning with prioritized defaults. In: Proc. LPKR’97 (LNAI 1471), Springer, pages 164–233, 1998.Google Scholar
  12. 12.
    E. Laenens, D. Vermeir. A fixpoint semantics for ordered logic. Journal of Logic and Computation, 1:159–185, 1990.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    F. Lin. Embracing causality in specifying the indirect effects of actions. In: Proc. IJCAI’95, pages 1985–1991, 1995.Google Scholar
  14. 14.
    W. Marek, A. Nerode and J. B. Remmel. Basic forward chaining construction for logic programs. In Logic Foundations of Computer Science (LNCS 1234), Springer, 1997.Google Scholar
  15. 15.
    W. Marek, A. Nerode and J. B. Remmel. Logic programs, well-ordering, and forward chaining. Journal of Pure and Applied Logic, 96(1–3):231–76, 1999.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    W. Marek, M. Truszczynski. Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, Springer, pages 375–398, 1999.Google Scholar
  17. 17.
    J. McCarthy, P. Hayes. Some philosophical problems from the standpoint of artificial intelligence. In: B. Meltzer and D. Michie eds. Machine Intelligence, vol. 4, pages 463–502, 1969.Google Scholar
  18. 18.
    I. Niemelä. Logic programs with stable model semantics as a constraint programming paradigm. In: Proc. the Workshop on Computational Aspects of Nonmonotonic Reasoning, pages 72–79, 1998.Google Scholar
  19. 19.
    H. Prakken, G. Sartor. Argument-based logic programming with defeasible priorities. J. Applied Non-Classical Logics, 7: 25–75, 1997.MATHMathSciNetGoogle Scholar
  20. 20.
    T. Przymusinski. On the declarative semantics of deductive databases and logic programming. In: J. Minker ed. Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Washington, pages 193–216, 1988.Google Scholar
  21. 21.
    R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2), 81–132, 1980.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    C. Sakama, K. Inoue. Representing priorities in logic programs. In: Proc. IJC-SLP’96, MIT Press, pages 82–96, 1996.Google Scholar
  23. 23.
    A. van Gelder. The alternating fixpoint of logic programs with negation. Journal of Computer and System Science, 47: 185–120, 1993.MATHCrossRefGoogle Scholar
  24. 24.
    K. Wang. Argumentation-based abduction in disjunctive logic programming. Journal Logic Programming (47 pages, to appear), 2000.Google Scholar
  25. 25.
    K. Wang, L. Zhou and F. Lin. A semantic framework for prioritized logic programs and its application to causal theories. Tech. report TUCS-9906, 1999.Google Scholar
  26. 26.
    J. You, L. Yuan. Three-valued semantics of logic programming: is it needed? In Proc. the 9th ACM PODS, pages 172–182, 1990.Google Scholar
  27. 27.
    J. You, X. Wang and L. Yuan. Disjunctive logic programming as constrained inferences. In: Proc. ICLP’97, MIT Press, 1997.Google Scholar
  28. 28.
    Y. Zhang, N. Foo. Answer sets for prioritized logic programs. In: Proc. the 1997 International Symposium on Logic Programming, MIT Press, pages 69–83, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Kewen Wang
    • 1
  • Lizhu Zhou
    • 1
  • Fangzhen Lin
    • 2
  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  2. 2.Department of Computer ScienceHong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations