Partial Models of Extended Generalized Logic Programs

  • José J. Alferes
  • Heinrich Herre
  • Luís Moniz Pereira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1861)

Abstract

In recent years there has been an increasing interest in extensions of the logic programming paradigm beyond the class of normal logic programs motivated by the need for a satisfactory respresentation and processing of knowledge. An important problem in this area is to find an adequate declarative semantics for logic programs. In the present paper a general preference criterion is proposed that selects the ‘intended’ partial models of extended generalized logic programs which is a conservative extension of the stationary semantics for normal logic programs of [13], [14] and generalizes the WFSX-semantics of [12]. The presented preference criterion defines a partial model of an extended generalized logic program as intended if it is generated by a stationary chain. The GWFSX-semantics is defined by the set-theoretical intersection of all stationary generated models, and thus generalizes the results from [9] and [1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.J. Alferes, L.M. Pereira. Reasoning with Logic Programming, LNAI vol. 1111, 1996, Springer Lecture Notes in Artificial IntelligenceGoogle Scholar
  2. 2.
    J. J. Alferes, H. Herre, L.M. Pereira. Partial Models of Extended Generalized Logic Programs, Report Nr. (2000), University of LeipzigGoogle Scholar
  3. 3.
    S. Brass and J. Dix. Characterizing D-WFS. Confluence and Iterated GCWA. Logics in Artificial Intelligence, Jelia’96, p. 268–283, 1996, Srpinger LNCS 1121Google Scholar
  4. 4.
    J. Engelfriet and H. Herre. Generated Preferred Models and Extensions of Nonmonotonic Systems; Logic Programming, p. 85–99, Proc. of the 1997 International Symposium on LP, J. Maluszinski (ed.), The MIT Press, 1997Google Scholar
  5. 5.
    J. Engelfriet and H. Herre. Stable Generated Models, Temporal Logic and Disjunctive Defaults, Journal of Logic Programming 41: 1–25 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. A. Kowalski and K. A. Bowen, editors, Proc. of ICLP, pages 1070–1080. MIT Press, 1988.Google Scholar
  7. 7.
    M. Gelfond and V. Lifschitz. Logic programs with classical negation. Proc. of ICLP’90, pages 579–597. MIT Press, 1990.Google Scholar
  8. 8.
    M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9:365–385, 1991.CrossRefGoogle Scholar
  9. 9.
    H. Herre and G. Wagner. Stable Models are Generated by a Stable Chain. Journal of Logic Programming, 30(2): 165–177, 1997MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    V. Lifschitz, L.R. Tang and H. Turner. Nested Expressions in Logic Programs, Annals of Mathematics and A.I., to appear (1999)Google Scholar
  11. 11.
    D. Pearce. Stable inference as intuitionistic validity, Journal of Logic Programming 38, 79–91 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    L.M. Pereira, J.J. Alferes. Wellfounded semantics for logic programs with explicit negation. In B. Neumann:(ed.) European Conference on AI, 102-106, Wien, 1992Google Scholar
  13. 13.
    T.C. Przymusinski. Stable semantics for disjunctive programs. New Generation Computing, 9:401–424, 1991.Google Scholar
  14. 14.
    T.C. Przymusinski. Autoepsitemic Logic of Knolwedge and Belief. Proc. of the 12th Nat. Conf. on A.I.,AAAI’ 94, 952–959Google Scholar
  15. 15.
    T.C. Przymusinski. Well-founded and Stationary Models of Logic Programs; Annals of Mathematics and Artificial Intelligence, 12 (1994), 141–187MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    T.C. Przymusinski. Super Logic Programs and Negation as Belief. In: R. Dyckhoff, H. Herre, P. Schroeder-Heister, editors, Proc. of the 5th Int. Workshop on Extensions of Logic Programming, Springer LNAI 1050, 229–236Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • José J. Alferes
    • 1
    • 3
  • Heinrich Herre
    • 2
  • Luís Moniz Pereira
    • 3
  1. 1.Departamento de MatemáticaUniversidade de ÉvoraPortugal
  2. 2.Institute of InformaticsUniversity of LeipzigGermany
  3. 3.Centro de InteligênciaUniversidade Nova de LisboaMonte da CaparicaPortugal

Personalised recommendations