Dunkl Operators: Theory and Applications

  • Margit Rösler
Part of the Lecture Notes in Mathematics book series (LNM, volume 1817)


These lecture notes are intended as an introduction to the theory of rational Dunkl operators and the associated special functions, with an emphasis on positivity and asymptotics. We start with an outline of the general concepts: Dunkl operators, the intertwining operator, the Dunkl kernel and the Dunkl transform. We point out the connection with integrable particle systems of Calogero-Moser-Sutherland type, and discuss some systems of orthogonal polynomials associated with them. A major part is devoted to positivity results for the intertwining operator and the Dunkl kernel, the Dunkl-type heat semigroup, and related probabilistic aspects. The notes conclude with recent results on the asymptotics of the Dunkl kernel.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.A., Pocketbook of Mathematical Functions. Verlag Harri Deutsch, Frankfurt/Main, 1984.MATHGoogle Scholar
  2. 2.
    Baker, T.H., Forrester, P.J., The Calogero-Sutherland model and generalized classical polynomials. Comm. Math. Phys. 188 (1997), 175–216.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    ___, The Calogero-Sutherland model and polynomials with prescribed symmetry. Nucl. Phys. B 492 (1997), 682–716.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    ___, Non-symmetric Jack polynomials and integral kernels. Duke Math. J. 95 (1998), 1–50.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brink, L., Hansson, T.H., Konstein, S., Vasiliev, M.A., The Calogero model-anyonic representation, fermionic extension and supersymmetry. Nucl. Phys. B 401 (1993), 591–612.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Calogero, F., Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12 (1971), 419–436.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chihara, T.S., An Introduction to Orthogonal Polynomials. Gordon and Breach, 1978.Google Scholar
  8. 8.
    Davies, E.B.: Spectral Theory and Differential Operators. Cambridge University Press, 1995.Google Scholar
  9. 9.
    van Diejen, J.F., Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement. Comm. Math. Phys. 188 (1997), 467–497.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    van Diejen, J.F., Vinet, L. Calogero-Sutherland-Moser Models. CRM Series in Mathematical Physics, Springer-Verlag, 2000.Google Scholar
  11. 11.
    Dunkl, C.F., Reflection groups and orthogonal polynomials on the sphere. Math. Z. 197 (1988), 33–60.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    ___, Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311 (1989), 167–183.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    ___, Operators commuting with Coxeter group actions on polynomials. In: Stanton, D. (ed.), Invariant Theory and Tableaux, Springer, 1990, pp. 107–117.Google Scholar
  14. 14.
    ___, Integral kernels with reflection group invariance. Canad. J. Math. 43 (1991), 1213–1227.MATHMathSciNetGoogle Scholar
  15. 15.
    ___, Hankel transforms associated to finite reflection groups. In: Proc. of the special session on hypergeometric functions on domains of positivity, Jack polynomials and applications. Proceedings, Tampa 1991, Contemp. Math. 138 (1992), pp. 123–138.MathSciNetGoogle Scholar
  16. 16.
    ___, Intertwining operators associated to the group S3. Trans. Amer. Math. Soc. 347 (1995), 3347–3374.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    ___, Symmetric Functions and BN-invariant spherical harmonics. Preprint; math.CA/0207122.Google Scholar
  18. 18.
    Dunkl, C.F., de Jeu M.F.E., Opdam, E.M., Singular polynomials for finite reflection groups. Trans. Amer. Math. Soc. 346 (1994), 237–256.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dunkl, C.F., Xu, Yuan, Orthogonal Polynomials of Several Variables; Cambridge Univ. Press, 2001.Google Scholar
  20. 20.
    Eastham, M.S.P., The Asymptotic Solution of Linear Differential Systems: Applications of the Levinson Theorem. Clarendon Press, Oxford 1989.MATHGoogle Scholar
  21. 21.
    Fell, J.M.G., Doran, R.S., Representations of-Algebras, Locally Compact Groups, and Banach—Algebraic Bundles, Vol. 1. Academic Press, 1988.Google Scholar
  22. 22.
    Graham, C., McGehee, O.C., Essays in Commutative Harmonic Analysis, Springer Grundlehren 238, Springer-Verlag, New York 1979.MATHGoogle Scholar
  23. 23.
    Grove, L.C., Benson, C.T., Finite Reflection Groups; Second edition. Springer, 1985.Google Scholar
  24. 24.
    Ha, Z.N.C., Exact dynamical correlation functions of the Calogero-Sutherland model and one dimensional fractional statistics in one dimension: View from an exactly solvable model. Nucl. Phys. B 435 (1995), 604–636.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Haldane, D., Physics of the ideal fermion gas: Spinons and quantum symmetries of the integrable Haldane-Shastry spin chain. In: A. Okiji, N. Kamakani (eds.), Correlation effects in low-dimensional electron systems. Springer, 1995, pp. 3–20.Google Scholar
  26. 26.
    Heckman, G.J., A remark on the Dunkl differential-difference operators. In: Barker, W., Sally, P. (eds.) Harmonic analysis on reductive groups. Progress in Math. 101, Birkhäuser, 1991. pp. 181–191.Google Scholar
  27. 27.
    ___, Dunkl operators. Séminaire Bourbaki 828, 1996-97; Astérisque 245 (1997), 223–246.MathSciNetGoogle Scholar
  28. 28.
    Helgason, S., Groups and Geometric Analysis. American Mathematical Society, 1984.Google Scholar
  29. 29.
    Humphreys, J.E., Reflection Groups and Coxeter Groups. Cambridge University Press, 1990.Google Scholar
  30. 30.
    de Jeu, M.F.E., The Dunkl transform. Invent. Math. 113 (1993), 147–162.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    ___, Dunkl operators. Thesis, University of Leiden, 1994.Google Scholar
  32. 32.
    ___, Subspaces with equal closure. Preprint. math.CA/0111015.Google Scholar
  33. 33.
    Kakei, S., Common algebraic structure for the Calogero-Sutherland models. J. Phys. A 29 (1996), L619–L624.CrossRefMathSciNetGoogle Scholar
  34. 34.
    Kallenberg, O., Foundations of Modern Probability. Springer-Verlag, 1997.Google Scholar
  35. 35.
    Knop, F., Sahi, S., A recursion and combinatorial formula for Jack polynomials. Invent. Math. 128 (1997), 9–22.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Lapointe L., Vinet, L., Exact operator solution of the Calogero-Sutherland model. Comm. Math. Phys. 178 (1996), 425–452.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Lassalle, M., Polynômes de Laguerre généralisés. C.R. Acad. Sci. Paris t. 312 Série I (1991), 725–728MATHMathSciNetGoogle Scholar
  38. 38.
    ___, Polynômes de Hermite généralisés. C.R. Acad. Sci. Paris t. 313 Série I (1991), 579–582.MATHMathSciNetGoogle Scholar
  39. 39.
    Macdonald, I.G., The Volume of a Compact Lie Group. Invent. Math. 56 (1980), 93–95.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    ___, Some conjectures for root systems. SIAM J. Math. Anal. 13 (1982), 988–1007.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Moser, J., Three integrable Hamiltonian systems connected with isospectral deformations, Adv. in Math. 16 (1975), 197–220.MATHCrossRefGoogle Scholar
  42. 42.
    Olshanetsky, M.A., Perelomov, A.M., Completely integrable Hamiltonian systems connected with semisimple Lie algebras. Invent. Math. 37 (1976), 93–108.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    ___, Quantum systems related to root systems, and radial parts of Laplace operators. Funct. Anal. Appl. 12 (1978), 121–128.CrossRefGoogle Scholar
  44. 44.
    Opdam, E.M., Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compositio Math. 85 (1993), 333–373.MATHMathSciNetGoogle Scholar
  45. 45.
    ___, Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175 (1995), 75–121MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Pasquier, V.: A lecture on the Calogero-Sutherland models. In: Integrable models and strings (Espoo, 1993), Lecture Notes in Phys. 436, Springer, 1994, pp. 36–48.Google Scholar
  47. 47.
    Perelomov, A.M., Algebraical approach to the solution of a one-dimensional model of N interacting particles. Teor. Mat. Fiz. 6 (1971), 364–391.MathSciNetGoogle Scholar
  48. 48.
    Polychronakos, A.P., Exchange operator formalism for integrable systems of particles. Phys. Rev. Lett. 69 (1992), 703–705.MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Rösler, M., Bessel-type signed hypergroups on R. In: Heyer, H., Mukherjea, A. (eds.) Probability measures on groups and related structures XI. Proceedings, Oberwolfach 1994. World Scientific 1995, 292–304.Google Scholar
  50. 50.
    ___, Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys. 192 (1998), 519–542.MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    ___, Positivity of Dunkl’s intertwining operator. Duke Math. J. 98 (1999), 445–463.MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    ___, Short-time estimates for heat kernels associated with root systems, in Special Functions, Conf. Proc. Hong Kong June 1999, eds. C. Dunkl et al., World Scientific, Singapore, 2000, 309–323.Google Scholar
  53. 53.
    ___, One-parameter semigroups related to abstract quantum models of Calogero type. In: Infinite Dimensional Harmonic Analysis (Kyoto, Sept. 1999, eds. H. Heyer et al.) Gräbner-Verlag 2000, 290–305.Google Scholar
  54. 54.
    Rösler, M., de Jeu, M., Asymptotic analysis for the Dunkl kernel. math.CA-/0202083; to appear in J. Approx. Theory.Google Scholar
  55. 55.
    Rösler, M., Voit, M., Markov Processes related with Dunkl operators. Adv. Appl. Math. 21 (1998), 575–643.MATHCrossRefGoogle Scholar
  56. 56.
    Rosenblum, M., Generalized Hermite polynomials and the Bose-like oscillator calculus. In: Operator Theory: Advances and Applications, Vol. 73, Basel, Birkhäuser Verlag 1994, 369–396.Google Scholar
  57. 57.
    Sutherland, B., Exact results for a quantum many-body problem in one dimension. Phys. Rep. A5 (1972), 1372–1376.Google Scholar
  58. 58.
    Titchmarsh, E.C., The Theory of Functions. 2nd ed., Oxford University Press, 1950.Google Scholar
  59. 59.
    Trimèche, K., Paley-Wiener Theorems for the Dunkl transform and Dunkl translation operators. Integral Transform. Spec. Funct. 13 (2002), 17–38.MATHCrossRefGoogle Scholar
  60. 60.
    A. Wintner, On a theorem of Bôcher in the theory of ordinary linear differential equations, Amer. J. Math. 76 (1954), 183–190.MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Ujino, H., Wadati., M., Rodrigues formula for Hi-Jack symmetric polynomials associated with the quantum Calogero model. J. Phys. Soc. Japan 65 (1996), 2423–2439.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Margit Rösler
    • 1
  1. 1.Mathematisches InstitutUniversität GöttingenGöttingenGermany

Personalised recommendations