Advertisement

The Model-Checking Kit

  • Claus Schröter
  • Stefan Schwoon
  • Javier Esparza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2679)

Abstract

The Model-Checking Kit [8] is a collection of programs which allow to model finite state systems using a variety of modelling languages, and verify them using a variety of checkers, including deadlock-checkers, reachability-checkers, and model-checkers for the temporal logics CTL and LTL [7].

Keywords

Modelling Language Atomic Proposition Liveness Property Input Language Computation Tree Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ADVANCE — Advanced Validation Techniques for Telecommunication Protocols. http://verif.liafa.jussieu.fr/~haberm/ADVANCE/main.html.Google Scholar
  2. 2.
    E. Best and B. Grahlmann. PEP Documentation and User Guide 1.8. Universität Oldenburg, 1998.Google Scholar
  3. 3.
    E. Best and R. P. Hopkins. B(PN)2 — a Basic Petri Net Programming Notation. In PARLE’93, LNCS 694, pages 379–390. Springer, 1993.Google Scholar
  4. 4.
    M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, L. Mounier, J. P. Krimm, and J. Sifakis. The Intermediate Representation IF. Technical Report. Vérimag, 1998.Google Scholar
  5. 5.
    R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, C-35(8):677–691, Aug. 1986.CrossRefGoogle Scholar
  6. 6.
    J. C. Corbett. Evaluating Deadlock Detection Methods, 1994.Google Scholar
  7. 7.
    E. A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Computer Science, volume B, pages 997–1067. Elsevier Science Publishers B. V., 1990.Google Scholar
  8. 8.
    J. Esparza, C. Schröter, and S. Schwoon. The Model-Checking Kit. http://www7.in.tum.de/gruppen/theorie/KIT/.Google Scholar
  9. 9.
    B. Grahlmann, M. Möller, and U. Anhalt. A new Interface for the PEP-tool — Parallel Finite Automata. 2nd Workshop of Algorithms and Tools for Petri nets. Oldenburg, 1995.Google Scholar
  10. 10.
    B. Grahlmann, S. Römer, T. Thielke, B. Graves, M. Damm, R. Riemann, L. Jenner, S. Melzer, and A. Gronewold. PEP: Programming Environment Based on Petri Nets. Technical Report 14, Universität Hildesheim, May 1995.Google Scholar
  11. 11.
    M. Heiner and P. Deusen. Petri net based qualitative analysis — A case study. Technical report I-08/1995. Brandenburg Technische Universität Cottbus, 1995.Google Scholar
  12. 12.
    K. Heljanko. Combining Symbolic and Partial Order Methods for Model Checking 1-Safe Petri Nets. PhD thesis, Helsinki University of Technology, 2002.Google Scholar
  13. 13.
    G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.Google Scholar
  14. 14.
    V. Khomenko. CLP. http://www.cs.ncl.ac.uk/people/victor.khomenko/home.formal/tools/tools.html.Google Scholar
  15. 15.
    C. Lewerentz and T. Lindner. Case Study Production Cell. In Formal Development of Reactive Systems, LNCS 891. Springer, 1995.Google Scholar
  16. 16.
    A. J. Martin. Self-timed FIFO: An exercise in compiling programs into VLSI circuits. In From HDL Descriptions to Guruanteed Correct Circuit Designs, pages 133–153. Elsevier Science Publishers, 1986.Google Scholar
  17. 17.
    K. L. McMillan. Symbolic Model Checking — An approach to the state explosion problem. PhD thesis, Carnegie Mellon University, 1992.Google Scholar
  18. 18.
    K. L. McMillan. Using Unfoldings to Avoid the State Explosion Problem in the Verification of Asynchronous Circuits. In CAV’92, LNCS 663, pages 164–174. Springer, 1992.Google Scholar
  19. 19.
    M. Raynal. Algorithms For Mutual Exclusion, 1986.Google Scholar
  20. 20.
    O. Roig, J. Cortadella, and E. Pastor. Verification of Asynchronous Circuits by BDD-based Model Checking of Petri Nets. In ATPN’95, LNCS 935, pages 374–391. Springer, 1995.Google Scholar
  21. 21.
    A. Valmari. On-the-Fly Verification with Stubborn Sets. In CAV’93, LNCS 697, pages 397–408. Springer, 1993.Google Scholar
  22. 22.
    K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. PROD Reference Manual. Technical Reports, B(13):1–56, Aug. 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Claus Schröter
    • 1
  • Stefan Schwoon
    • 1
  • Javier Esparza
    • 1
  1. 1.Institutsverbund InformatikUniversität StuttgartStuttgart

Personalised recommendations