Cartesian Factoring of Polyhedra in Linear Relation Analysis

  • Nicolas Halbwachs
  • David Merchat
  • Catherine Parent-Vigouroux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2694)

Abstract

Linear Relation Analysis [CH78] suffers from the cost of operations on convex polyhedra, which can be exponential with the number of involved variables. In order to reduce this cost, we propose to detect when a polyhedron is a Cartesian product of polyhedra of lower dimensions, i.e., when groups of variables are unrelated with each other. Classical operations are adapted to work on such factored polyhedra. Our implementation shows encouraging experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BBC+00._N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, H. Sipma, and T. Uribe. Verifying temporal properties of reactive systems: A STeP tutorial. Formal Methods in System Design, 16:227–270, 2000.CrossRefGoogle Scholar
  2. BBM97.
    N. Bjorner, I. Anca Browne, and Z. Manna. Automatic generation of invariants and intermediate assertions. Theoretical Computer Science, 173(1):49–87, February 1997.CrossRefMathSciNetGoogle Scholar
  3. BRZH02.
    R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and the parma polyhedra library. In M. V. Hermenegildo and G. Puebla, editors, 9th International Symposium on Static Analysis, SAS’02, Madrid, Spain, September 2002. LNCS 2477.Google Scholar
  4. CC77.
    P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fix-points. In 4th ACM Symposium on Principles of Programming Languages, POPL’77, Los Angeles, January 1977.Google Scholar
  5. CH78.
    P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of aprogram. In 5th ACM Symposium on Principles of Programming Languages, POPL’78, Tucson (Arizona), January 1978.Google Scholar
  6. Che68.
    N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming problem. U.S.S.R. Computational Mathematics and Mathematical Physics, 8(6):282–293, 1968.MATHCrossRefGoogle Scholar
  7. CL98.
    Ph. Clauss and V. Loechner. Parametric analysis of polyhedral iteration spaces. Journal of VLSI Signal Processing, 19(2), July 1998.Google Scholar
  8. DRS01.
    N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manipulations in C programs via integer analysis. In P. Cousot, editor, SAS’01, Paris, July 2001. LNCS 2126.Google Scholar
  9. DRS03.
    N. Dor, M. Rodeh, and M. Sagiv. CCSV: towards a realistic tool for statically detecting all buffer overflows in C. to appear in PLDI03, 2003.Google Scholar
  10. Hal79.
    N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les variables d’un programme. Thèse de troisième cycle, University of Grenoble, March 1979.Google Scholar
  11. HHWT97.
    T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems. Software Tools for Technology Transfer, 1:110–122, 1997.MATHCrossRefGoogle Scholar
  12. HPR97.
    N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time systems using linear relation analysis. Formal Methods in System Design, 11(2):157–185, August 1997.CrossRefGoogle Scholar
  13. IJT91.
    F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An overview of the PIPS project. In ACM Int. Conf. on Supercomputing, ICS’91, Köln, 1991.Google Scholar
  14. JHR99.
    B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in analyses of numerical properties. In A. Cortesi and G. Filé, editors, Static Analysis Symposium, SAS’99, Venice (Italy), September 1999. LNCS 1694, Springer Verlag.Google Scholar
  15. Kar76.
    M. Karr. Affine relationships among variables of a program. Acta Informatica, 6:133–151, 1976.MATHCrossRefMathSciNetGoogle Scholar
  16. LeV92.
    H. LeVerge. A note on Chernikova’s algorithm. RR. 635, IRISA, February 1992.Google Scholar
  17. MRTT53.
    T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method. In H. W. Kuhn and A. W. Tucker, editors, Contribution to the Theory of Games — Volume II. Annals of Mathematic Studies, nr 28, Princeton University Press, 1953.Google Scholar
  18. Tip95.
    F. Tip. A survey of program slicing techniques. Journal of Programming Languages, 3(3):121–189, September 1995.Google Scholar
  19. Wil93.
    D. K. Wilde. A library for doing polyhedral operations. RR. 785, IRISA, December 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Nicolas Halbwachs
    • 1
  • David Merchat
    • 1
  • Catherine Parent-Vigouroux
    • 1
  1. 1.VérimagGrenobleFrance

Personalised recommendations