Characters of symmetric groups and free cumulants

  • Philippe Biane
Chapter

Abstract

We investigate Kerov’s formula expressing the normalized irreducible characters of symmetric groups evaluated on a cycle, in terms of the free cumulants of the associated Young diagrams.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    Biane, P.:Representations of symmetric groups and free probability.Adv. Math.,138, 126–181 (1998)Google Scholar
  2. [IO]
    Ivanov, V., Olshanski, G.: Kerov’s central limit theorem for the Plancherel measure on Young diagrams.Preprint (June2001)Google Scholar
  3. [K1]
    Kerov, S.V.: Transition probabilities of continual Young diagrams and the Markov moment problem.Funct.Anal.Appl.,27, 104–117 (1993)MATHCrossRefMathSciNetGoogle Scholar
  4. [K2]
    Kerov, S.V.: Talk at IHP conference (January2000)Google Scholar
  5. [KO]
    Kerov, S.V., Olshanski, G.: Polynomial functions on the set of Young diagrams.C.R.Acad.Sci.Paris Sér.I Math.,319, no.2, 121–126 (1994)MATHMathSciNetGoogle Scholar
  6. [LS]
    Lascoux, A., Schützenberger, M.P.: Treillis et bases des groupes de Coxeter. Electron.J.Combin.3, no.2, Research paper 27, 35 pp.(1996)Google Scholar
  7. [M]
    Macdonald, I.G.: Symmetric functions and Hall polynomials, Second Edition.Oxford Univ.Press, Oxford (1995)MATHGoogle Scholar
  8. [Mo]
    Molev, A.I.: Stirling partitions of the symmetric group and Laplace operators for the orthogonal Lie algebra.Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand,1995).Discrete Math.,180, no.1–3, 281–300 (1998)Google Scholar
  9. [O]
    Okounkov, A.:Private communication (January2001)Google Scholar
  10. [Sp]
    Speicher, R.: Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory.Memoirs of the AMS,627 (1998)Google Scholar
  11. [St1]
    Stanley, R.:Private communication (May2001)Google Scholar
  12. [St2]
    Stanley, R.:Irreducible symmetric group characters of rectangular shape. Preprint (September 2001)Google Scholar
  13. [SW]
    Speicher, R., Woroudi, R.:Boolean independence.In:Voiculescu, D.(ed)Free probability, Fields Institue Communications, 267–280 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Philippe Biane
    • 1
  1. 1.CNRS Département de Mathématiques et ApplicationsÉcole Normale SupérieureParisFRANCE

Personalised recommendations