Characters of symmetric groups and free cumulants

  • Philippe Biane
Part of the Lecture Notes in Mathematics book series (LNM, volume 1815)


We investigate Kerov’s formula expressing the normalized irreducible characters of symmetric groups evaluated on a cycle, in terms of the free cumulants of the associated Young diagrams.


Symmetric Group Cayley Graph Young Diagram Formal Power Series Group Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    Biane, P.:Representations of symmetric groups and free probability.Adv. Math.,138, 126–181 (1998)Google Scholar
  2. [IO]
    Ivanov, V., Olshanski, G.: Kerov’s central limit theorem for the Plancherel measure on Young diagrams.Preprint (June2001)Google Scholar
  3. [K1]
    Kerov, S.V.: Transition probabilities of continual Young diagrams and the Markov moment problem.Funct.Anal.Appl.,27, 104–117 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [K2]
    Kerov, S.V.: Talk at IHP conference (January2000)Google Scholar
  5. [KO]
    Kerov, S.V., Olshanski, G.: Polynomial functions on the set of Young diagrams.C.R.Acad.Sci.Paris Sér.I Math.,319, no.2, 121–126 (1994)zbMATHMathSciNetGoogle Scholar
  6. [LS]
    Lascoux, A., Schützenberger, M.P.: Treillis et bases des groupes de Coxeter. Electron.J.Combin.3, no.2, Research paper 27, 35 pp.(1996)Google Scholar
  7. [M]
    Macdonald, I.G.: Symmetric functions and Hall polynomials, Second Edition.Oxford Univ.Press, Oxford (1995)zbMATHGoogle Scholar
  8. [Mo]
    Molev, A.I.: Stirling partitions of the symmetric group and Laplace operators for the orthogonal Lie algebra.Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand,1995).Discrete Math.,180, no.1–3, 281–300 (1998)Google Scholar
  9. [O]
    Okounkov, A.:Private communication (January2001)Google Scholar
  10. [Sp]
    Speicher, R.: Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory.Memoirs of the AMS,627 (1998)Google Scholar
  11. [St1]
    Stanley, R.:Private communication (May2001)Google Scholar
  12. [St2]
    Stanley, R.:Irreducible symmetric group characters of rectangular shape. Preprint (September 2001)Google Scholar
  13. [SW]
    Speicher, R., Woroudi, R.:Boolean independence.In:Voiculescu, D.(ed)Free probability, Fields Institue Communications, 267–280 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Philippe Biane
    • 1
  1. 1.CNRS Département de Mathématiques et ApplicationsÉcole Normale SupérieureParisFRANCE

Personalised recommendations