The Maude 2.0 System

  • Manuel Clavel
  • Francisco Durán
  • Steven Eker
  • Patrick Lincoln
  • Narciso Martí-Oliet
  • José Meseguer
  • Carolyn Talcott
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2706)

Abstract

This paper gives an overview of the Maude 2.0 system. We emphasize the full generality with which rewriting logic and membership equational logic are supported, operational semantics issues, the new built-in modules, the more general Full Maude module algebra, the new META-LEVEL module, the LTL model checker, and new implementation techniques yielding substantial performance improvements in rewriting modulo. We also comment on Maude’s formal tool environment and on applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a rewriting logic point of view. Theoretical Computer Science, 285:155–185, 2002.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Bruni and J. Meseguer. Generalized rewrite theories. To appear in Procs. of ICALP’03. LNCS. Springer, 2003.Google Scholar
  3. 3.
    M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming Applications. CSLI Publications, 2000.Google Scholar
  4. 4.
    M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. Quesada. Maude Manual, 1999. http://maude.cs.uiuc.edu.
  5. 5.
    M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. Quesada. The Maude system. In Procs. of RTA’99. LNCS 1631, pp. 240–243. Springer, 1999.Google Scholar
  6. 6.
    M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. Quesada. Maude: specification and programming in rewriting logic. Theoretical Computer Science, 285:187–243, 2002.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a formal meta-tool. In Procs. of FM’99. LNCS 1709, pp. 1684–1703. Springer, 1999.Google Scholar
  8. 8.
    M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical Computer Science, 285:245–288, 2002.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. R. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan. Making data structures persistent. Journal of Computer and System Science, 38:86–124, 1989.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Eker. Term rewriting with operator evaluation strategy. In Procs. of WRLA’98. ENTCS 15. Elsevier, 1998.Google Scholar
  11. 11.
    S. Eker. Associative-commutative rewriting on large terms. This volume.Google Scholar
  12. 12.
    S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and K. Sonmez. Pathway logic: Symbolic analysis of biological signaling. In Procs. of the Pacific Symposium on Biocomputing, pp. 400–412, 2002.Google Scholar
  13. 13.
    S. Eker, M. Knapp, K. Laderoute, P. Lincoln, and C. Talcott. Pathway logic: Executable models of biological networks. In Procs. of WRLA’02. ENTCS 71. Elsevier, 2002.Google Scholar
  14. 14.
    K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In Procs. of CONCUR’00. LNCS 1877, pp. 153–167. Springer, 2000.Google Scholar
  15. 15.
    K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST Series, 1998.Google Scholar
  16. 16.
    P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Procs. of CAV’01. LNCS 2102, pp. 53–65. Springer, 2001.Google Scholar
  17. 17.
    R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear temporal logic. In Protocol Specification Testing and Verification, pp. 3–18. Chapman and Hall, 1995.Google Scholar
  18. 18.
    G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. Design: An International Journal, 13(3):289–307, 1998.Google Scholar
  19. 19.
    S. Lucas. Termination of rewriting with strategy annotations. In Procs. of LPAR’01. LNAI 2250, pp. 669–684. Springer, 2001.Google Scholar
  20. 20.
    N. Martí-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography. Theoretical Computer Science, 285:121–154, 2002.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Meseguer, M. Palomino, and N. Martí-Oliet. Equational abstractions. To appear in Procs. of CADE’03. LNCS. Springer, 2003.Google Scholar
  22. 22.
    J. Meseguer. Membership algebra as a logical framework for equational specification. In Procs. of WADT’97. LNCS 1376, pp. 18–61. Springer, 1998.Google Scholar
  23. 23.
    F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Procs. of CAV’00. LNCS 1633, pp. 247–263. Springer, 2000.Google Scholar
  24. 24.
    C. Talcott. To be presented at the DARPA FTN Winter 2003 PI meeting, TX, USA, 2003.Google Scholar
  25. 25.
    P. Thati, K. Sen, and N. Martí-Oliet. An executable specification of asynchronous pi-calculus semantics and may testing in Maude 2.0. In Procs. of WRLA’02. ENTCS 71. Elsevier, 2002.Google Scholar
  26. 26.
    A. Verdejo and N. Martí-Oliet. Implementing CCS in Maude 2. In Procs. of WRLA’02. ENTCS 71. Elsevier, 2002.Google Scholar
  27. 27.
    P. Viry. Equational rules for rewriting logic. Theoretical Computer Science, 285:487–517, 2002.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Manuel Clavel
    • 1
  • Francisco Durán
    • 2
  • Steven Eker
    • 3
  • Patrick Lincoln
    • 3
  • Narciso Martí-Oliet
    • 1
  • José Meseguer
    • 4
  • Carolyn Talcott
    • 3
  1. 1.Universidad Complutense de MadridSpain
  2. 2.Universidad de MálagaSpain
  3. 3.SRI InternationalUSA
  4. 4.University of Illinois at Urbana-ChampaignUSA

Personalised recommendations