Proving Temporal Properties of Z Specifications Using Abstraction

  • Graeme Smith
  • Kirsten Winter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2651)

Abstract

This paper presents a systematic approach to proving temporal properties of arbitrary Z specifications. The approach involves (i) transforming the Z specification to an abstract temporal structure (or state transition system), (ii) applying a model checker to the temporal structure, (iii) determining whether the temporal structure is too abstract based on the model checking result and (iv) refining the temporal structure where necessary. The approach is based on existing work from the model checking literature, adapting it to Z.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CC79]
    P. Cousot and R. Cousot. Systematic design of program analysis framework. In 6th ACM Symposium on Principles of Programming Languages, 1979.Google Scholar
  2. [CGJ+00]
    E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement. In A.P. Sistla E.A. Emerson, editor, Computer Aided Verification (CAV’00), volume 1855 of LNCS. Springer-Verlag, 2000.CrossRefGoogle Scholar
  3. [CGL94]
    E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.CrossRefGoogle Scholar
  4. [CGP00]
    E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.Google Scholar
  5. [DB01]
    J. Derrick and E. Boiten. Refinement in Z and Object-Z, Foundations and Advanced Applications. Springer-Verlag, 2001.Google Scholar
  6. [DHT97]
    P. Strooper D. Hazel and O. Traynor. Possum: An animator for the SUM specification language. In W. Wong and K. Leung, editors, Asia Pacific Software Engineering Conference (APSEC 97), pages 42–51. IEEE Computer Society, 1997.Google Scholar
  7. [Eme90]
    E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages 996–1072. Elsevier Science Publishers, 1990.Google Scholar
  8. [GS97]
    S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In Int. Conf. on Computer Aided Verification (CAV 97), volume 1254 of LNCS, pages 72–83. Springer-Verlag, 1997.Google Scholar
  9. [Jac94]
    D. Jackson. Abstract model checking of infinite specifications. In M. Naftalin, T. Denvir, and M. Bertran, editors, Formal Methods Europe (FME’94), volume 873 of LNCS, pages 519–531. Springer-Verlag, 1994.Google Scholar
  10. [KSW96]
    Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in Isabelle/HOL. In J. von Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics (TPHOLs 96), volume 1125 of LNCS, pages 283–298. Springer-Verlag, 1996.Google Scholar
  11. [LGS+95]
    C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving abstractions for the verification of concurrent systems. Formal Methods in System Design, 6(1), 1995.Google Scholar
  12. [MBS02]
    A. Mota, P. Borba, and A. Sampaio. Mechanical abstraction of CSPZ processes. In L.-H. Eriksson and P. Lindsay, editors, Formal Methods Europe FME’2002), volume 2391 of LNCS, pages 163–183. Springer-Verlag, 2002.Google Scholar
  13. [Saa97]
    M. Saaltink. The Z-Eves system. In J. Bowen, M. Hinchey, and D. Till, editors, International Conference of Z User (ZUM 97), volume 1212 of LNCS, pages 72–85. Springer-Verlag, 1997.Google Scholar
  14. [Smi00]
    G. Smith. The Object-Z Specification Language. Advances in Formal Methods. Kluwer Academic Publishers, 2000.Google Scholar
  15. [Spi92]
    J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition, 1992.Google Scholar
  16. [SS99]
    H. Saïdi and N. Shankar. Abstract and model check while you prove. In N. Halbwachs and D. Peled, editors, Computer Aided Verification (CAV 99), volume 1633 of LNCS, pages 443–454. Springer-Verlag, 1999.CrossRefGoogle Scholar
  17. [TM95]
    I. Toyn and J. McDermid. CADiZ: An architecture for Z tools and its implementation. Software — Practice and Experience, 25(3):305–330, 1995.CrossRefGoogle Scholar
  18. [Weh99]
    H. Wehrheim. Data abstraction for CSP-OZ. In J. Woodcock and J. Wing, editors, World Congress on Formal Methods (FM’99), volume 1709 of LNCS. Springer-Verlag, 1999.Google Scholar
  19. [WS03]
    K. Winter and G. Smith. Compositional verification for Object-Z. In 3rd International Conference of Z and B Users (ZB 2003), LNCS. Springer-Verlag, 2003. This volume.Google Scholar
  20. [WVF97]
    J. M. Wing and M. Vaziri-Farahani. A case study in model checking software systems. Science of Computer Programming, 28:273–299, 1997.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Graeme Smith
    • 1
  • Kirsten Winter
    • 1
  1. 1.Software Verification Research CentreUniversity of QueenslandAustralia

Personalised recommendations