Advertisement

A Recurrent Neural Network for Robotic Sensory-based Search

  • Darlo Maravall
  • Javier de Lope
  • Miguel Ángel Patricio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2687)

Abstract

Based on the utilitarian navigation concept, the paper introduces a recurrent neural network for the search of sensory sources by a mobile robot. First, a utility function for sensory-based search is defined and a dynamic optimization process is obtained. Next, a bio-inspired neural model of sensory-motor coordination is proposed. The paper analyzes the proposed motor neural circuit in more detail, using a dynamic model of the respective motor neurons. Experimental results confirm the viability of the recurrent neural model for implementing sensory-based search by a mobile robot.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maravall, D., de Lope, J., Serradilla, F. (2000) Combination of model-based and reactive methods in autonomous navigation. Proc. of the IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, 2328–2333Google Scholar
  2. 2.
    Mira, J., Delgado, A.E. (2003) Where is knowledge in robotics? Some methodological issues on symbolic and connectionist perspectives of AI. In C. Zhou, D. Maravall, D. Ruan (eds). Autonomous Robotic Systems: Soft Computing and Hard Computing Methodologies and Applications. Physica-Verlag, Springer, Heidelberg, 3–34CrossRefGoogle Scholar
  3. 3.
    Clancey, W.J. (1997) Situated Cognition: On Human Knowledge and Computer Representations. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Beer, R.D. (1997) The dynamics of adaptive behavior: A research program. Robotics and Autonomous Systems 20(2–4), 257–289CrossRefGoogle Scholar
  5. 5.
    Sharkey, N.E., Ziemke, T. (2000) A consideration of the biological and psychological foundations of autonomous robotics. Connection Science 10(3–4), 361–391Google Scholar
  6. 6.
    Moreno-Diaz, R., Mira, J. (1995) Logic and Neural Networks: Variations on Themes by W. S. McCulloch. In R. Moreno-Diaz, J. Mira-Mira (eds). Brain Processes, Theories and Models. The MIT Press, Cambridge, MA, 24–36Google Scholar
  7. 7.
    De Lope, J., Maravall, D. (2003) Integration of reactive utilitarian navigation and topological modeling. In C. Zhou, D. Maravall, D. Ruan (eds). Autonomous Robotic Systems: Soft Computing and Hard Computing Methodologies and Applications. Physica-Verlag, Springer, Heidelberg, 103–139CrossRefGoogle Scholar
  8. 8.
    Maravall, D., de Lope, J. (2003) Integration of artificial potential field theory and sensory-based search in autonomous navigation. Proc. of the IFAC 2002 World Congress, Elsevier (to appear)Google Scholar
  9. 9.
    Dayan, P., Abbot, L.F. (2001) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge, MAGoogle Scholar
  10. 10.
    Arbib, M. (2003) Introducing the neuron. In M.A. Arbib (ed). The Handbook of Brain Theory and Neural Networks, second edition. The MIT Press, Cambridge, MA, 3–9Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Darlo Maravall
    • 1
  • Javier de Lope
    • 1
  • Miguel Ángel Patricio
    • 2
  1. 1.Department of Artificial Intelligence Faculty of Computer ScienceUniversidad Politëcnica de MadridMadridSpain
  2. 2.Departamento de InformaticaUniversidad Carlos III de MadridSpain

Personalised recommendations