Advertisement

A neural approach to extended logic programs

  • Jesús Medina
  • Enrique Mérida-Casermeiro
  • Manuel Ojeda-Aciego
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2686)

Abstract

A neural net based development of multi-adjoint logic programming is presented. Transformation rules carry programs into neural networks, where truth-values of rules relate to output of neurons, truth-values of facts represent input, and network functions are determined by a set of general operators; the output of the net being the values of propositional variables under its minimal model. Some experimental results are reported.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Eklund and F. Klawonn. Neural fuzzy logic programming. IEEE Trans. on Neural Networks, 3(5):815–818, 1992.CrossRefGoogle Scholar
  2. 2.
    S. Hölldobler and Y. Kalinke. Towards a new massively parallel computational model for logic programming. In ECAI’94 workshop on Combining Symbolic and Connectioninst Processing, pages 68–77, 1994.Google Scholar
  3. 3.
    S. Hölldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of logic programs by recurrent neural networks. Applied Intelligence, 11(1):45–58, 1999.CrossRefGoogle Scholar
  4. 4.
    E.P. Klement, R. Mesiar, and E. Pap. Triangular norms. Kluwer academic, 2000.Google Scholar
  5. 5.
    J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A multi-adjoint logic approach to abductive reasoning.. Lect. Notes in Computer Science 2237, pages 269–283, 2001.Google Scholar
  6. 6.
    J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming with continuous semantics. Lect. Notes in Artificial Intelligence 2173, pages 351–364, 2001.Google Scholar
  7. 7.
    E. Mérida-Casermeiro, G. Galán, and J. Muñoz Pérez. An efficient multivalued Hopfield network for the traveling salesman problem. Neural Processing Letters, 14:203–216, 2001.zbMATHCrossRefGoogle Scholar
  8. 8.
    M. H. van Emden and R. Kowalski. The semantics of predicate logic as a programming language. Journal of the ACM, 23(4):733–742, 1976.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jesús Medina
    • 1
  • Enrique Mérida-Casermeiro
    • 1
  • Manuel Ojeda-Aciego
    • 1
  1. 1.Dept. Matemática AplicadaUniv. MálagaSpain

Personalised recommendations