Advertisement

Co-Evolutionary Algorithm for RBF by Self- Organizing Population of neurons

  • A. J. Rivera
  • J. Ortega
  • I. Rojas
  • M. J. del Jesús
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2686)

Abstract

This paper presents a new evolutionary procedure to design optimal networks of Radial Basis Functions (RBFs). It defines a self-organizing process into a population of RBFs based on the estimation of the fitness for each neuron in the population, and on the use of operators that, according to a set of fuzzy rules, transform the RBFs. This way, it has been possible to define cooperation, speciation, and niching features in the evolution of the population.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Angeline, P.J.; Saunders, G.M.; Pollack, J.B.:“An evolutionary algorithm that constructs recurrent neural networks”. IEEE Trans. Neural Networks, Vol.5, No.1, pp.54–65. January, 1994.CrossRefGoogle Scholar
  2. [2]
    V. Cherkassky, D. Gehring, F. Mulier, “Comparison of adaptive methods for function estimation from samples”, IEE Trans. Neural Networks, 7(4), pp. 969–984, 1996.CrossRefGoogle Scholar
  3. [3]
    Coello, C.C.:“An Updated Survey of Evolutionary Multiobjective Optimization Techniques: State of the art and future trends”. Congress on Evolutionary Computation, CEC’99, pp.3–13, 1999Google Scholar
  4. [4]
    N. Garcia-Pedrajas, C. Hervas-Martínez, J. Muñoz-Pérez, “Multi-objective cooperative coevolution of artificial neural networks (multi-objective cooperative networks)”, Neural Networks, vol. 15, pp. 1259–1278, 2002CrossRefGoogle Scholar
  5. [5]
    González, J.; Rojas, I.; Pomares, H.; Ortega, J:“RBF Neural Networks, Multiobjective Optimization and Time Series Forecasting”, Lecture Notes in Computer Science, (2084), pp.498–505. 2001Google Scholar
  6. [6]
    Haykin, Neural Networks. A comprehensive foundation, 2nd. NJ: Prentice-Hall, 1999.zbMATHGoogle Scholar
  7. [7]
    Mandani, E. H.; Assilian, S.:“An experitment in linguistic synthesys with a fuzzy logic controller”. Int. J. Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975CrossRefGoogle Scholar
  8. [8]
    Maniezzo, V.:“Genetic evolution of the topology and weight distribution of neural networks”. IEEE Trans. on Neural Networks, Vol.5, No.1, pp.39–53. January, 1994.Google Scholar
  9. [9]
    Marquardt, D. W “An algorithm for least-squares estimation of non-linear inequalities,” SIAM J. Appl. Math., vol. 11, pp. 431–441, 1963.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Moody, J; Darken, C.: “Fast learning networks of locally-tuned processing units,” Neural Computation, vol. 3 n. 4 pp.579–588, 1991CrossRefGoogle Scholar
  11. [11]
    Pomares, H.; Rojas, I.; Ortega, J.; González, J.; Prieto, A.: “A systematic approach to Self-Generating Fuzzy Rule-Table for Function Approximation”. IEEE Trans. Syst., Man, and Cyber., Part B, 30(3):431–447. 2000CrossRefGoogle Scholar
  12. [12]
    Rivera, A.; Ortega, J.; Prieto A.:“Design of RBF networks by cooperative/competitive evolution of units” International Conference on Artificial Neural Networks and Genetic Algorithms, ICANNGA 2001. April 2001.Google Scholar
  13. [13]
    Rivera, A.; Ortega, J.; del Jesús, M.; González, J; “Optimización de RBFs mediante cooperación-competición de neuronas y algoritmos de minimización de error”. II Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados. MAEB03, Febrero 2003.Google Scholar
  14. [14]
    Smalz, R.; Conrad, M.:“Combining evolution with credit apportionment: a new learning algorithm for neural nets”. Neural Netwroks, Vol.7, No.2, pp.341–351, 1994.CrossRefGoogle Scholar
  15. [15]
    Whitehead, B.A.; Choate, T.D.:“Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series prediction”. IEEE Trans. on Neural Networks, Vol.7, No.4, pp.869–880. July, 1996.CrossRefGoogle Scholar
  16. [16]
    Widrow, B.; Lehr, M.A.:“30 Years of adaptative neural networks: perceptron, madaline and backpropagation”. Proceedings of the IEEE, Vol. 78 n. 9, September 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. J. Rivera
    • 1
  • J. Ortega
    • 2
  • I. Rojas
    • 2
  • M. J. del Jesús
    • 1
  1. 1.Departamento de InformáticaUniversidad de JaénGranada
  2. 2.Departamento de Arquitectura y Tecnología de ComputadoresUniversidad de GranadaGranada

Personalised recommendations