Towards Biomedical Problem Solving in a Game Environment

  • Yang Cai
  • Ingo Snel
  • B. Suman Bharathi
  • Clementine Klein
  • Judith Klein-Seetharaman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2659)

Abstract

Biomedical systems involve complex interactions between diverse components. Problem solving in such systems requires insight, i.e. the capability to make non-obvious connections. In this paper, we present a game-based problem solving environment, where users can explore biological interactions with navigation on atomic to macroscopic scales, role-play, and networked collaboration. The study investigates the system architecture of the biological game, bio-morphing characters, and bio-interactions with bio-sensing and bio-dynamics. The prototype has been implemented on PC and tested in a preschool environment where users have little knowledge in biology. The experiment shows that the game greatly inspired users both in concept learning and entertainment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roco, M.C. and W.S. Bainbridge: Overview. In: Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology, and Cognitive Science, Bainbridge, W.S. (ed.) National Science Foundation: Arlington, Virginia. (2002) 1–23Google Scholar
  2. 2.
    Kuchinsky, A., K. Graham, D. Moh, A. Adler, K. Babaria, and M.L. Creech: Biological storytelling: A software tool for biological information organization based upon narrative structure. AVI (2002)Google Scholar
  3. 3.
  4. 4.
  5. 5.
    Cai, Y.: Pictorial Thinking, in Journal of Cognition Science.: Taiyuan, China (1986)Google Scholar
  6. 6.
    Hayden, T.: The inner Einstein, in US News (2002)Google Scholar
  7. 7.
    McCarthy, J. and P.J. Hayes: Some philosophical problems from the standpoint of artificial intelligence, in Machine Intelligence, Michie, D. (ed.) Edinburgh University Press: Edinburgh (1969)Google Scholar
  8. 8.
    Simon, H.: Models of Thoughts. Vol. II. Yale Press (1989)Google Scholar
  9. 9.
    Feynman, R.: The Feynman Lectures on Physics. Reading, Massachusetts: Addison-Wesley (1963)Google Scholar
  10. 10.
    Gardin, F. and B. Meltzer: Analogical representations of naive physics. Artificial Intelligence 38 (1989) 139–159CrossRefGoogle Scholar
  11. 11.
    Forbus, K.D.: Qualitative Process Theory. Artificial Intelligence 24 (1994) 85–168CrossRefGoogle Scholar
  12. 12.
    Gardner, M.: Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American 223 (1970) 120–123CrossRefGoogle Scholar
  13. 13.
    Wolfram, S.: A new kind of science Wolfram Publishing (2002)Google Scholar
  14. 14.
    Ganapathiraju, M., D. Weisser, R. Rosenfeld, J. Carbonell, R. Reddy, and J. Klein-Seetharaman: Comparative n-gram analysis of whole-genome protein sequences. in Proc. Human Language Technologies San Diego (2002)Google Scholar
  15. 15.
    Guyton, A.C. and Hall, J.E.: Textbook of Medical Physiology Philadelphia: W.B. Saunders Co (1997)Google Scholar
  16. 16.
    Perrig, P. and W.J. Perrig: Implicit and explicit memory in mentally retarded, learning disabled, and normal children. Swiss J of Psychology 54(2) (1995) 77–86Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Yang Cai
    • 1
  • Ingo Snel
    • 2
  • B. Suman Bharathi
    • 2
    • 3
  • Clementine Klein
    • 4
  • Judith Klein-Seetharaman
    • 1
    • 3
    • 5
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  2. 2.Institute for Organic ChemistryUniversity of FrankfurtFrankfurtGermany
  3. 3.Institute for Biological Information Processing, Research Institute JülichJülichGermany
  4. 4.Berufskolleg Kartäuserwall, Abteilung MedienKölnGermany
  5. 5.Department of PharmacologyUniversity of Pittsburgh Medical SchoolPittsburghUSA

Personalised recommendations