Performance Analysis of a Parallel Application in the GRID

  • Holger Brunst
  • Edgar Gabriel
  • Marc Lange
  • Matthias S. Müller
  • Wolfgang E. Nagel
  • Michael M. Resch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2658)

Abstract

Performance analysis of real applications in clusters and GRID like environments is essential to fully exploit the performance of new architectures. The key problem is the deepening hierarchy of latencies and bandwidths and the growing heterogeneity of systems. This paper discusses the basic problems of performance analysis in such clustered and heterogeneous environments. It further presents a software environment that supports the user in running codes and getting more insight into the performance of the application. In order to give a proof of the concept a code for direct numerical simulation of reactive flows is run in a GRID like hardware environment, and the performance analysis is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Buyya. High Performance Cluster Computing, Volume 1: Architectures and Systems, Volume 2: Programming and Applications. Prentice Hall, 1999.Google Scholar
  2. 2.
    Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1999.Google Scholar
  3. 3.
    S. Pickles, F. Costen, J. Brooke, E. Gabriel, M. Müller, M. Resch and S. Ord. Metacomputing Across Intercontinental Networks. Future Generation Computer Systems, 7, 2001, 911–918.CrossRefGoogle Scholar
  4. 4.
    H. Brunst, W. E. Nagel, and H.-C. Hoppe. Group-Based Performance Analysis for Multithreaded SMP Cluster Applications. In R. Sakellariou, J. Keane, J. Gurd, and L. Freeman, Eds., Euro-Par 2001 Parallel Processing, LNCS 2150, 148–153, Springer, 2001.CrossRefGoogle Scholar
  5. 5.
    H. Brunst, M. Winkler, W. E. Nagel, and H.-C. Hoppe. Performance Optimization for Large Scale Computing: The Scalable VAMPIR Approach. In V. N. Alexandrov, J. J. Dongarra, B. A. Juliano, R. S. Renner, and C. K. Tan, Eds., Computational Science-ICCS 2001, Part II, LNCS 2074, 751–760, Springer, 2001.CrossRefGoogle Scholar
  6. 6.
    S. Moore, D. Cronk, K. London, and J. Dongarra. Review of Performance Analysis Tools for MPI Parallel Programs. In Y. Cotronis and J. Dongarra, Eds., Recent Advances in Parallel Virtual Machine and Message Passing Interface, 8th European PVM/MPI Users’ Group Meeting, Proceedings, LNCS 2131, 241–248, Springer, 2001.CrossRefGoogle Scholar
  7. 7.
    W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR: Visualization and Analysis of MPI Resources. Supercomputer, 12(1), 1996, 69–80. http://www.pallas.de/pages/vampir.htm.Google Scholar
  8. 8.
    J. Almond, D. Snelling. UNICORE: Secure and Uniform Access to Ditributed Resources via the World Wide Web. 1998. http://www.fz-juelich.de/unicore/whitepaper.ps.
  9. 9.
    METODIS-Metacomputing Tools for Distributed Systems. http://www.hlrs.de/organization/pds/projects/metodis.
  10. 10.
    DAMIEN-Distributed Applications and Middleware for Industrial Use of European Networks. http://www.hlrs.de/organization/pds/projects/damien.
  11. 11.
    F. A. Williams. Combustion Theory. second edition, Benjamin/Cummings, 1985.Google Scholar
  12. 12.
    M. Lange and J. Warnatz. Investigation of Chemistry-Turbulence Interactions Using DNS on the Cray T3E. In E. Krause and W. Jäger, Eds., High Performance Computing in Science and Engineering’ 99, 333–343, Springer, 2000.Google Scholar
  13. 13.
    M. Lange. Parallel DNS of Autoignition Processes with Adaptive Computation of Chemical Source Terms. In C. B. Jenssen, T. Kvamsdal, H. I. Andersson, B. Pettersen, A. Ecer, J. Periaux, N. Satofuka, and P. Fox, Eds., Parallel Computational Fluid Dynamics: Trends and Applications, 551–558, Elsevier Science, 2001.Google Scholar
  14. 14.
    M. Lange. Massively Parallel DNS of Flame Kernel Evolution in Spark-Ignited Turbulent Mixtures. In E. Krause and W. Jäger, Eds., High Performance Computing in Science and Engineering’ 02, 425–438, Springer, 2002.Google Scholar
  15. 15.
    E. Gabriel, M. Lange and R. Rühle. Direct Numerical Simulation of Turbulent Reactive Flows in a Metacomputing Environment. In Proceedings of the 2001 ICPP Workshops, 237–244, IEEE Computer Society, 2001.Google Scholar
  16. 16.
    E. Gabriel, M. Resch and R. Rühle. Implementing MPI with Optimized Algorithms for Metacomputing. In A. Skjellum, P. V. Bangalore, Y. S. Dandass, Eds., Proceedings of the Third MPI Developer’s and User’s Conference, MPI Software Technology Press, 1999.Google Scholar
  17. 17.
    Message Passing Interface Forum. MPI: A Message-Passing Interface Standard (Version 1.1). 1995. http://www.mpi-forum.org.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Holger Brunst
    • 2
  • Edgar Gabriel
    • 1
    • 3
  • Marc Lange
    • 1
  • Matthias S. Müller
    • 1
  • Wolfgang E. Nagel
    • 2
  • Michael M. Resch
    • 1
  1. 1.High Performance Computing Center StuttgartStuttgartGermany
  2. 2.ZHR, Dresden University of TechnologyDresdenGermany
  3. 3.Innovative Computing Laboratories, Computer Science DepartmentUniversity of TennesseeKnoxvilleUSA

Personalised recommendations